Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Brain ; 139(Pt 2): 346-54, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26626369

ABSTRACT

Thioredoxin 2 (TXN2; also known as Trx2) is a small mitochondrial redox protein essential for the control of mitochondrial reactive oxygen species homeostasis, apoptosis regulation and cell viability. Exome sequencing in a 16-year-old adolescent suffering from an infantile-onset neurodegenerative disorder with severe cerebellar atrophy, epilepsy, dystonia, optic atrophy, and peripheral neuropathy, uncovered a homozygous stop mutation in TXN2. Analysis of patient-derived fibroblasts demonstrated absence of TXN2 protein, increased reactive oxygen species levels, impaired oxidative stress defence and oxidative phosphorylation dysfunction. Reconstitution of TXN2 expression restored all these parameters, indicating the causal role of TXN2 mutation in disease development. Supplementation with antioxidants effectively suppressed cellular reactive oxygen species production, improved cell viability and mitigated clinical symptoms during short-term follow-up. In conclusion, our report on a patient with TXN2 deficiency suggests an important role of reactive oxygen species homeostasis for human neuronal maintenance and energy metabolism.


Subject(s)
Homeostasis/physiology , Mitochondria/metabolism , Mitochondrial Proteins/deficiency , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/metabolism , Child , Humans , Male , Mitochondria/genetics , Mitochondrial Proteins/genetics , Neurodegenerative Diseases/genetics , Oxidation-Reduction , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Thioredoxins/genetics
2.
Int J Biochem Cell Biol ; 63: 16-20, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25666559

ABSTRACT

For more than 50 years, reactive oxygen species have been considered as harmful agents, which can attack proteins, lipids or nucleic acids. In order to deal with reactive oxygen species, there is a sophisticated system developed in mitochondria to prevent possible damage. Indeed, increased reactive oxygen species levels contribute to pathomechanisms in several human diseases, either by its impaired defense system or increased production of reactive oxygen species. However, in the last two decades, the importance of reactive oxygen species in many cellular signaling pathways has been unraveled. Homeostatic levels were shown to be necessary for correct differentiation during embryonic expansion of stem cells. Although the mechanism is still not fully understood, we cannot only regard reactive oxygen species as a toxic by-product of mitochondrial respiration anymore. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.


Subject(s)
Energy Metabolism , Mitochondria/genetics , Oxidative Stress/genetics , Reactive Oxygen Species/metabolism , Cell Differentiation/genetics , Genome, Mitochondrial/genetics , Humans , Mitochondria/metabolism , Mutation , Oxidative Phosphorylation , Reactive Oxygen Species/toxicity
3.
Orphanet J Rare Dis ; 9: 119, 2014 Aug 20.
Article in English | MEDLINE | ID: mdl-25208612

ABSTRACT

BACKGROUND: Sengers syndrome is an autosomal recessive condition characterized by congenital cataract, hypertrophic cardiomyopathy, skeletal myopathy and lactic acidosis. Mutations in the acylglycerol kinase (AGK) gene have been recently described as the cause of Sengers syndrome in nine families. METHODS: We investigated the clinical and molecular features of Sengers syndrome in seven new families; five families with the severe and two with the milder form. RESULTS: Sequence analysis of AGK revealed compound heterozygous or homozygous predicted loss-of-function mutations in all affected individuals. A total of eight different disease alleles were identified, of which six were novel, homozygous c.523_524delAT (p.Ile175Tyrfs*2), c.424-1G > A (splice site), c.409C > T (p.Arg137*) and c.877 + 3G > T (splice site), and compound heterozygous c.871C > T (p.Gln291*) and c.1035dup (p.Ile346Tyrfs*39). All patients displayed perinatal or early-onset cardiomyopathy and cataract, clinical features pathognomonic for Sengers syndrome. Other common findings included blood lactic acidosis and tachydyspnoea while nystagmus, eosinophilia and cervical meningocele were documented in only either one or two cases. Deficiency of the adenine nucleotide translocator was found in heart and skeletal muscle biopsies from two patients associated with respiratory chain complex I deficiency. In contrast to previous findings, mitochondrial DNA content was normal in both tissues. CONCLUSION: We compare our findings to those in 21 previously reported AGK mutation-positive Sengers patients, confirming that Sengers syndrome is a clinically recognisable disorder of mitochondrial energy metabolism.


Subject(s)
Cardiomyopathies/genetics , Cataract/genetics , Mutation , Phosphotransferases (Alcohol Group Acceptor)/genetics , Humans , Phenotype
4.
Biochim Biophys Acta ; 1837(1): 98-111, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23999537

ABSTRACT

Overproduction of reactive oxygen species (ROS) has been implicated in a range of pathologies. Mitochondrial flavin dehydrogenases glycerol-3-phosphate dehydrogenase (mGPDH) and succinate dehydrogenase (SDH) represent important ROS source, but the mechanism of electron leak is still poorly understood. To investigate the ROS production by the isolated dehydrogenases, we used brown adipose tissue mitochondria solubilized by digitonin as a model. Enzyme activity measurements and hydrogen peroxide production studies by Amplex Red fluorescence, and luminol luminescence in combination with oxygraphy revealed flavin as the most likely source of electron leak in SDH under in vivo conditions, while we propose coenzyme Q as the site of ROS production in the case of mGPDH. Distinct mechanism of ROS production by the two dehydrogenases is also apparent from induction of ROS generation by ferricyanide which is unique for mGPDH. Furthermore, using native electrophoretic systems, we demonstrated that mGPDH associates into homooligomers as well as high molecular weight supercomplexes, which represent native forms of mGPDH in the membrane. By this approach, we also directly demonstrated that isolated mGPDH itself as well as its supramolecular assemblies are all capable of ROS production.


Subject(s)
Electron Transport , Glycerolphosphate Dehydrogenase/chemistry , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Animals , Ferricyanides/metabolism , Glycerolphosphate Dehydrogenase/metabolism , Glycerophosphates/metabolism , Hydrogen Peroxide/metabolism , Mammals , Mitochondria/enzymology , Rats , Succinate Dehydrogenase/chemistry , Succinate Dehydrogenase/metabolism , Ubiquinone/metabolism
5.
PLoS One ; 8(8): e71869, 2013.
Article in English | MEDLINE | ID: mdl-23967256

ABSTRACT

Mitochondrial respiratory chain is organised into supramolecular structures that can be preserved in mild detergent solubilisates and resolved by native electrophoretic systems. Supercomplexes of respiratory complexes I, III and IV as well as multimeric forms of ATP synthase are well established. However, the involvement of complex II, linking respiratory chain with tricarboxylic acid cycle, in mitochondrial supercomplexes is questionable. Here we show that digitonin-solubilised complex II quantitatively forms high molecular weight structures (CIIhmw) that can be resolved by clear native electrophoresis. CIIhmw structures are enzymatically active and differ in electrophoretic mobility between tissues (500 - over 1000 kDa) and cultured cells (400-670 kDa). While their formation is unaffected by isolated defects in other respiratory chain complexes, they are destabilised in mtDNA-depleted, rho0 cells. Molecular interactions responsible for the assembly of CIIhmw are rather weak with the complexes being more stable in tissues than in cultured cells. While electrophoretic studies and immunoprecipitation experiments of CIIhmw do not indicate specific interactions with the respiratory chain complexes I, III or IV or enzymes of the tricarboxylic acid cycle, they point out to a specific interaction between CII and ATP synthase.


Subject(s)
Electron Transport Complex II/chemistry , Animals , Cell Line , Electron Transport , Electron Transport Chain Complex Proteins/chemistry , Electron Transport Chain Complex Proteins/metabolism , Electron Transport Complex II/metabolism , Humans , Metabolic Networks and Pathways , Mitochondria/genetics , Mitochondria/metabolism , Molecular Weight , Organ Specificity , Oxidative Phosphorylation , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...