Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 14(2): e0355722, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36880749

ABSTRACT

Bulk RNA sequencing technologies have provided invaluable insights into host and bacterial gene expression and associated regulatory networks. Nevertheless, the majority of these approaches report average expression across cell populations, hiding the true underlying expression patterns that are often heterogeneous in nature. Due to technical advances, single-cell transcriptomics in bacteria has recently become reality, allowing exploration of these heterogeneous populations, which are often the result of environmental changes and stressors. In this work, we have improved our previously published bacterial single-cell RNA sequencing (scRNA-seq) protocol that is based on multiple annealing and deoxycytidine (dC) tailing-based quantitative scRNA-seq (MATQ-seq), achieving a higher throughput through the integration of automation. We also selected a more efficient reverse transcriptase, which led to reduced cell loss and higher workflow robustness. Moreover, we successfully implemented a Cas9-based rRNA depletion protocol into the MATQ-seq workflow. Applying our improved protocol on a large set of single Salmonella cells sampled over different growth conditions revealed improved gene coverage and a higher gene detection limit compared to our original protocol and allowed us to detect the expression of small regulatory RNAs, such as GcvB or CsrB at a single-cell level. In addition, we confirmed previously described phenotypic heterogeneity in Salmonella in regard to expression of pathogenicity-associated genes. Overall, the low percentage of cell loss and high gene detection limit makes the improved MATQ-seq protocol particularly well suited for studies with limited input material, such as analysis of small bacterial populations in host niches or intracellular bacteria. IMPORTANCE Gene expression heterogeneity among isogenic bacteria is linked to clinically relevant scenarios, like biofilm formation and antibiotic tolerance. The recent development of bacterial single-cell RNA sequencing (scRNA-seq) enables the study of cell-to-cell variability in bacterial populations and the mechanisms underlying these phenomena. Here, we report a scRNA-seq workflow based on MATQ-seq with increased robustness, reduced cell loss, and improved transcript capture rate and gene coverage. Use of a more efficient reverse transcriptase and the integration of an rRNA depletion step, which can be adapted to other bacterial single-cell workflows, was instrumental for these improvements. Applying the protocol to the foodborne pathogen Salmonella, we confirmed transcriptional heterogeneity across and within different growth phases and demonstrated that our workflow captures small regulatory RNAs at a single-cell level. Due to low cell loss and high transcript capture rates, this protocol is uniquely suited for experimental settings in which the starting material is limited, such as infected tissues.


Subject(s)
CRISPR-Cas Systems , Single-Cell Gene Expression Analysis , High-Throughput Nucleotide Sequencing/methods , RNA/genetics , RNA, Ribosomal , Gene Expression Profiling/methods , Bacteria/genetics , Sequence Analysis, RNA/methods , RNA-Directed DNA Polymerase/genetics , Single-Cell Analysis/methods
2.
Nat Biotechnol ; 41(8): 1107-1116, 2023 08.
Article in English | MEDLINE | ID: mdl-36604543

ABSTRACT

Capturing an individual cell's transcriptional history is a challenge exacerbated by the functional heterogeneity of cellular communities. Here, we leverage reprogrammed tracrRNAs (Rptrs) to record selected cellular transcripts as stored DNA edits in single living bacterial cells. Rptrs are designed to base pair with sensed transcripts, converting them into guide RNAs. The guide RNAs then direct a Cas9 base editor to target an introduced DNA target. The extent of base editing can then be read in the future by sequencing. We use this approach, called TIGER (transcribed RNAs inferred by genetically encoded records), to record heterologous and endogenous transcripts in individual bacterial cells. TIGER can quantify relative expression, distinguish single-nucleotide differences, record multiple transcripts simultaneously and read out single-cell phenomena. We further apply TIGER to record metabolic bet hedging and antibiotic resistance mobilization in Escherichia coli as well as host cell invasion by Salmonella. Through RNA recording, TIGER connects current cellular states with past transcriptional states to decipher complex cellular responses in single cells.


Subject(s)
CRISPR-Cas Systems , RNA , RNA/genetics , RNA, Guide, CRISPR-Cas Systems , Bacteria/genetics , Bacteria/metabolism , DNA/genetics , Gene Editing , RNA, Bacterial/genetics
3.
Methods Mol Biol ; 2584: 105-121, 2023.
Article in English | MEDLINE | ID: mdl-36495446

ABSTRACT

Microbes exhibit an extraordinary capacity to adapt their physiology to different environments using phenotypic heterogeneity. However, the majority of gene regulation studies are conducted in bulk reflecting only averaged gene expression levels across millions of cells. Bacterial single-cell RNA-seq (scRNA-seq) can overcome this by enabling whole transcriptome and unbiased analysis of microbes at the single-cell level. Here, we describe a detailed workflow of single-cell RNA-seq based on the multiple annealing and dC-tailing-based quantitative single-cell RNA-seq (MATQ-seq) protocol. Following adjustments to the original eukaryotic protocol, the workflow was applied to two major human pathogens Salmonella enterica serovar Typhimurium (henceforth Salmonella) and Pseudomonas aeruginosa (henceforth Pseudomonas). The development of bacterial scRNA-seq protocols offers promising avenues to explore the molecular programs underlying phenotypic heterogeneity on the transcriptome level in different settings such as infection, persistence, ecology, and biofilms.


Subject(s)
Gene Expression Profiling , Single-Cell Gene Expression Analysis , Humans , Gene Expression Profiling/methods , Transcriptome , Salmonella typhimurium/metabolism , Gene Expression Regulation , Single-Cell Analysis/methods , Sequence Analysis, RNA/methods
4.
Nucleic Acids Res ; 50(7): 3985-3997, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35357498

ABSTRACT

Yersinia phage YerA41 is morphologically similar to jumbo bacteriophages. The isolated genomic material of YerA41 could not be digested by restriction enzymes, and used as a template by conventional DNA polymerases. Nucleoside analysis of the YerA41 genomic material, carried out to find out whether this was due to modified nucleotides, revealed the presence of a ca 1 kDa substitution of thymidine with apparent oligosaccharide character. We identified and purified the phage DNA polymerase (DNAP) that could replicate the YerA41 genomic DNA even without added primers. Cryo-electron microscopy (EM) was used to characterize structural details of the phage particle. The storage capacity of the 131 nm diameter head was calculated to accommodate a significantly longer genome than that of the 145 577 bp genomic DNA of YerA41 determined here. Indeed, cryo-EM revealed, in contrast to the 25 Å in other phages, spacings of 33-36 Å between shells of the genomic material inside YerA41 heads suggesting that the heavily substituted thymidine increases significantly the spacing of the DNA packaged inside the capsid. In conclusion, YerA41 appears to be an unconventional phage that packages thymidine-modified genomic DNA into its capsids along with its own DNAP that has the ability to replicate the genome.


Subject(s)
Bacteriophages , Bacteriophages/chemistry , Bacteriophages/genetics , Capsid , Cryoelectron Microscopy , DNA, Viral/genetics , DNA-Directed DNA Polymerase/genetics , Genome, Viral/genetics , Thymidine
5.
Microlife ; 3: uqac020, 2022.
Article in English | MEDLINE | ID: mdl-37223351

ABSTRACT

Transcriptome analysis of individual cells by single-cell RNA-seq (scRNA-seq) has become routine for eukaryotic tissues, even being applied to whole multicellular organisms. In contrast, developing methods to read the transcriptome of single bacterial cells has proven more challenging, despite a general perception of bacteria as much simpler than eukaryotes. Bacterial cells are harder to lyse, their RNA content is about two orders of magnitude lower than that of eukaryotic cells, and bacterial mRNAs are less stable than their eukaryotic counterparts. Most importantly, bacterial transcripts lack functional poly(A) tails, precluding simple adaptation of popular standard eukaryotic scRNA-seq protocols that come with the double advantage of specific mRNA amplification and concomitant depletion of rRNA. However, thanks to very recent breakthroughs in methodology, bacterial scRNA-seq is now feasible. This short review will discuss recently published bacterial scRNA-seq approaches (MATQ-seq, microSPLiT, and PETRI-seq) and a spatial transcriptomics approach based on multiplexed in situ hybridization (par-seqFISH). Together, these novel approaches will not only enable a new understanding of cell-to-cell variation in bacterial gene expression, they also promise a new microbiology by enabling high-resolution profiling of gene activity in complex microbial consortia such as the microbiome or pathogens as they invade, replicate, and persist in host tissue.

6.
Genome Med ; 13(1): 150, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34517886

ABSTRACT

BACKGROUND: Klebsiella spp. are opportunistic pathogens which can cause severe infections, are often multi-drug resistant and are a common cause of hospital-acquired infections. Multiple new Klebsiella species have recently been described, yet their clinical impact and antibiotic resistance profiles are largely unknown. We aimed to explore Klebsiella group- and species-specific clinical impact, antimicrobial resistance (AMR) and virulence. METHODS: We analysed whole-genome sequence data of a diverse selection of Klebsiella spp. isolates and identified resistance and virulence factors. Using the genomes of 3594 Klebsiella isolates, we predicted the masses of 56 ribosomal subunit proteins and identified species-specific marker masses. We then re-analysed over 22,000 Matrix-Assisted Laser Desorption Ionization - Time Of Flight (MALDI-TOF) mass spectra routinely acquired at eight healthcare institutions in four countries looking for these species-specific markers. Analyses of clinical and microbiological endpoints from a subset of 957 patients with infections from Klebsiella species were performed using generalized linear mixed-effects models. RESULTS: Our comparative genomic analysis shows group- and species-specific trends in accessory genome composition. With the identified species-specific marker masses, eight Klebsiella species can be distinguished using MALDI-TOF MS. We identified K. pneumoniae (71.2%; n = 12,523), K. quasipneumoniae (3.3%; n = 575), K. variicola (9.8%; n = 1717), "K. quasivariicola" (0.3%; n = 52), K. oxytoca (8.2%; n = 1445), K. michiganensis (4.8%; n = 836), K. grimontii (2.4%; n = 425) and K. huaxensis (0.1%; n = 12). Isolates belonging to the K. oxytoca group, which includes the species K. oxytoca, K. michiganensis and K. grimontii, were less often resistant to 4th-generation cephalosporins than isolates of the K. pneumoniae group, which includes the species K. pneumoniae, K. quasipneumoniae, K. variicola and "K. quasivariicola" (odds ratio = 0.17, p < 0.001, 95% confidence interval [0.09,0.28]). Within the K. pneumoniae group, isolates identified as K. pneumoniae were more often resistant to 4th-generation cephalosporins than K. variicola isolates (odds ratio = 2.61, p = 0.003, 95% confidence interval [1.38,5.06]). K. oxytoca group isolates were found to be more likely associated with invasive infection to primary sterile sites than K. pneumoniae group isolates (odds ratio = 2.39, p = 0.0044, 95% confidence interval [1.05,5.53]). CONCLUSIONS: Currently misdiagnosed Klebsiella spp. can be distinguished using a ribosomal marker-based approach for MALDI-TOF MS. Klebsiella groups and species differed in AMR profiles, and in their association with invasive infection, highlighting the importance for species identification to enable effective treatment options.


Subject(s)
Klebsiella Infections/diagnosis , Klebsiella oxytoca/genetics , Klebsiella oxytoca/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Whole Genome Sequencing , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Female , Genome, Bacterial , Humans , Klebsiella Infections/microbiology , Klebsiella oxytoca/drug effects , Klebsiella pneumoniae/genetics , Male , Retrospective Studies , Species Specificity , Virulence/drug effects , Virulence/genetics , Virulence Factors
7.
Nat Microbiol ; 5(10): 1202-1206, 2020 10.
Article in English | MEDLINE | ID: mdl-32807892

ABSTRACT

Bacteria respond to changes in their environment with specific transcriptional programmes, but even within genetically identical populations these programmes are not homogenously expressed1. Such transcriptional heterogeneity between individual bacteria allows genetically clonal communities to develop a complex array of phenotypes1, examples of which include persisters that resist antibiotic treatment and metabolically specialized cells that emerge under nutrient-limiting conditions2. Fluorescent reporter constructs have played a pivotal role in deciphering heterogeneous gene expression within bacterial populations3 but have been limited to recording the activity of single genes in a few genetically tractable model species, whereas the vast majority of bacteria remain difficult to engineer and/or even to cultivate. Single-cell transcriptomics is revolutionizing the analysis of phenotypic cell-to-cell variation in eukaryotes, but technical hurdles have prevented its robust application to prokaryotes. Here, using an improved poly(A)-independent single-cell RNA-sequencing protocol, we report the faithful capture of growth-dependent gene expression patterns in individual Salmonella and Pseudomonas bacteria across all RNA classes and genomic regions. These transcriptomes provide important reference points for single-cell RNA-sequencing of other bacterial species, mixed microbial communities and host-pathogen interactions.


Subject(s)
Bacteria/genetics , Gene Expression Profiling , Gene Expression Regulation, Bacterial , High-Throughput Nucleotide Sequencing , Single-Cell Analysis , Transcriptome , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Single-Cell Analysis/methods
8.
RNA ; 26(8): 1069-1078, 2020 08.
Article in English | MEDLINE | ID: mdl-32345633

ABSTRACT

A major challenge for RNA-seq analysis of gene expression is to achieve sufficient coverage of informative nonribosomal transcripts. In eukaryotic samples, this is typically achieved by selective oligo(dT)-priming of messenger RNAs to exclude ribosomal RNA (rRNA) during cDNA synthesis. However, this strategy is not compatible with prokaryotes in which functional transcripts are generally not polyadenylated. To overcome this, we adopted DASH (depletion of abundant sequences by hybridization), initially developed for eukaryotic cells, to improve both the sensitivity and depth of bacterial RNA-seq. DASH uses the Cas9 nuclease to remove unwanted cDNA sequences prior to library amplification. We report the design, evaluation, and optimization of DASH experiments for standard bacterial short-read sequencing approaches, including software for automated guide RNA (gRNA) design for Cas9-mediated cleavage in bacterial rDNA sequences. Using these gRNA pools, we effectively removed rRNA reads (56%-86%) in RNA-seq libraries from two different model bacteria, the Gram-negative pathogen Salmonella enterica and the anaerobic gut commensal Bacteroides thetaiotaomicron DASH works robustly, even with subnanogram amounts of input RNA. Its efficiency, high sensitivity, ease of implementation, and low cost (∼$5 per sample) render DASH an attractive alternative to rRNA removal protocols, in particular for material-constrained studies where conventional ribodepletion techniques fail.


Subject(s)
CRISPR-Cas Systems/genetics , RNA, Bacterial/genetics , RNA, Ribosomal/genetics , RNA-Seq/methods , Bacteria/genetics , DNA, Complementary/genetics , Gene Expression Profiling/methods , Gene Library , High-Throughput Nucleotide Sequencing/methods , Nucleic Acid Hybridization/methods , Sequence Analysis, RNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...