Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(29): 15788-15795, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37437895

ABSTRACT

Electron transport through noncovalent interaction is of fundamental and practical importance in nanomaterials and nanodevices. Recent single-molecule studies employing single-molecule junctions have revealed unique electron transport properties through noncovalent interactions, especially those through a π-π interaction. However, the relationship between the junction structure and electron transport remains elusive due to the insufficient knowledge of geometric structures. In this article, we employ surface-enhanced Raman scattering (SERS) synchronized with current-voltage (I-V) measurements to characterize the junction structure, together with the transport properties, of a single dimer and monomer junction of naphthalenethiol, the former of which was formed by the intermolecular π-π interaction. The correlation analysis of the vibrational energy and electrical conductance enables identifying the intermolecular and molecule-electrode interactions in these molecular junctions and, consequently, addressing the transport properties exclusively associated with the π-π interaction. In addition, the analysis achieved discrimination of the interaction between the NT molecule and the Au electrode of the junction, i.e., Au-π interactions through-π coupling and though-space coupling. The power density spectra support the noncovalent character at the interfaces in the molecular junctions. These results demonstrate that the simultaneous SERS and I-V technique provides a unique means for the structural and electrical investigation of noncovalent interactions.

2.
J Am Chem Soc ; 144(38): 17449-17456, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36103649

ABSTRACT

Single-molecule measurements of biomaterials bring novel insights into cellular events. For almost all of these events, post-translational modifications (PTMs), which alter the properties of proteins through their chemical modifications, constitute essential regulatory mechanisms. However, suitable single-molecule methodology to study PTMs is very limited. Here we show single-molecule detection of peptide phosphorylation, an archetypal PTM, based on electrical measurements. We found that the phosphate group stably bridges a nanogap between metal electrodes and exhibited high electrical conductance, which enables specific single-molecule detection of peptide phosphorylation. The present methodology paves the way to single-molecule studies of PTMs, such as single-molecule kinetics for enzymatic modification of proteins as shown here.


Subject(s)
Peptides , Phosphates , Biocompatible Materials , Peptides/metabolism , Phosphates/metabolism , Phosphorylation , Protein Processing, Post-Translational , Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...