Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38766216

ABSTRACT

Alpha-thalassemia is an autosomal recessive disease with increasing worldwide prevalence. The molecular basis is due to mutation or deletion of one or more duplicated α-globin genes, and disease severity is directly related to the number of allelic copies compromised. The most severe form, α-thalassemia major (αTM), results from loss of all four copies of α-globin and has historically resulted in fatality in utero. However, in utero transfusions now enable survival to birth. Postnatally, patients face challenges similar to ß-thalassemia, including severe anemia and erythrotoxicity due to imbalance of ß-globin and α-globin chains. While curative, hematopoietic stem cell transplantation (HSCT) is limited by donor availability and potential transplant-related complications. Despite progress in genome editing treatments for ß-thalassemia, there is no analogous curative option for patients suffering from α-thalassemia. To address this, we designed a novel Cas9/AAV6-mediated genome editing strategy that integrates a functional α-globin gene into the ß-globin locus in αTM patient-derived hematopoietic stem and progenitor cells (HSPCs). Incorporation of a truncated erythropoietin receptor transgene into the α-globin integration cassette dramatically increased erythropoietic output from edited HSPCs and led to the most robust production of α-globin, and consequently normal hemoglobin. By directing edited HSPCs toward increased production of clinically relevant RBCs instead of other divergent cell types, this approach has the potential to mitigate the limitations of traditional HSCT for the hemoglobinopathies, including low genome editing and low engraftment rates. These findings support development of a definitive ex vivo autologous genome editing strategy that may be curative for α-thalassemia.

2.
bioRxiv ; 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38260654

ABSTRACT

A multitude of tools now exist that allow us to precisely manipulate the human genome in a myriad of different ways. However, successful delivery of these tools to the cells of human patients remains a major barrier to their clinical implementation. Here we introduce a new cellular approach for in vivo genetic engineering, Secreted Particle Information Transfer (SPIT) that utilizes human cells as delivery vectors for in vivo genetic engineering. We demonstrate the application of SPIT for cell-cell delivery of Cre recombinase and CRISPR-Cas9 enzymes, we show that genetic logic can be incorporated into SPIT and present the first demonstration of human cells as a delivery platform for in vivo genetic engineering in immunocompetent mice. We successfully applied SPIT to genetically modify multiple organs and tissue stem cells in vivo including the liver, spleen, intestines, peripheral blood, and bone marrow. We anticipate that by harnessing the large packaging capacity of a human cell's nucleus, the ability of human cells to engraft into patients' long term and the capacity of human cells for complex genetic programming, that SPIT will become a paradigm shifting approach for in vivo genetic engineering.

4.
Front Endocrinol (Lausanne) ; 13: 963282, 2022.
Article in English | MEDLINE | ID: mdl-35992127

ABSTRACT

Pancreas (and islet) transplantation is the only curative treatment for type 1 diabetes patients whose ß-cell functions have been abolished. However, the lack of donor organs has been the major hurdle to save a large number of patients. Therefore, transplantation of animal organs is expected to be an alternative method to solve the serious shortage of donor organs. More recently, a method to generate organs from pluripotent stem cells inside the body of other species has been developed. This interspecies organ generation using blastocyst complementation (BC) is expected to be the next-generation regenerative medicine. Here, we describe the recent advances and future prospects for these two approaches.


Subject(s)
Organogenesis , Pluripotent Stem Cells , Animals , Blastocyst , Organogenesis/physiology , Regenerative Medicine , Transplantation, Heterologous
6.
Nat Commun ; 13(1): 1053, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35217666

ABSTRACT

Preexisting immunity against Cas9 proteins in humans represents a safety risk for CRISPR-Cas9 technologies. However, it is unclear to what extent preexisting Cas9 immunity is relevant to the eye as it is targeted for early in vivo CRISPR-Cas9 clinical trials. While the eye lacks T-cells, it contains antibodies, cytokines, and resident immune cells. Although precise mechanisms are unclear, intraocular inflammation remains a major cause of vision loss. Here, we used immunoglobulin isotyping and ELISA platforms to profile antibodies in serum and vitreous fluid biopsies from human adult subjects and Cas9-immunized mice. We observed high prevalence of preexisting Cas9-reactive antibodies in serum but not in the eye. However, we detected intraocular antibodies reactive to S. pyogenes-derived Cas9 after S. pyogenes intraocular infection. Our data suggest that serum antibody concentration may determine whether specific intraocular antibodies develop, but preexisting immunity to Cas9 may represent a lower risk in human eyes than systemically.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Animals , Antibodies/metabolism , CRISPR-Associated Protein 9/metabolism , Humans , Mice , Streptococcus pyogenes/metabolism , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...