Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Cells ; 13(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38607075

ABSTRACT

GDF15, also known as MIC1, is a member of the TGF-beta superfamily. Previous studies reported elevated serum levels of GDF15 in patients with kidney disorder, and its association with kidney disease progression, while other studies identified GDF15 to have protective effects. To investigate the potential protective role of GDF15 on podocytes, we first performed in vitro studies using a Gdf15-deficient podocyte cell line. The lack of GDF15 intensified puromycin aminonucleoside (PAN)-triggered endoplasmic reticulum stress and induced cell death in cultivated podocytes. This was evidenced by elevated expressions of Xbp1 and ER-associated chaperones, alongside AnnexinV/PI staining and LDH release. Additionally, we subjected mice to nephrotoxic PAN treatment. Our observations revealed a noteworthy increase in both GDF15 expression and secretion subsequent to PAN administration. Gdf15 knockout mice displayed a moderate loss of WT1+ cells (podocytes) in the glomeruli compared to wild-type controls. However, this finding could not be substantiated through digital evaluation. The parameters of kidney function, including serum BUN, creatinine, and albumin-creatinine ratio (ACR), were increased in Gdf15 knockout mice as compared to wild-type mice upon PAN treatment. This was associated with an increase in the number of glomerular macrophages, neutrophils, inflammatory cytokines, and chemokines in Gdf15-deficient mice. In summary, our findings unveil a novel renoprotective effect of GDF15 during kidney injury and inflammation by promoting podocyte survival and regulating endoplasmic reticulum stress in podocytes, and, subsequently, the infiltration of inflammatory cells via paracrine effects on surrounding glomerular cells.


Subject(s)
Kidney Diseases , Podocytes , Humans , Mice , Animals , Podocytes/metabolism , Puromycin Aminonucleoside/adverse effects , Puromycin Aminonucleoside/metabolism , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Creatinine/metabolism , Kidney Diseases/metabolism , Inflammation/metabolism , Mice, Knockout
2.
Am J Transplant ; 24(1): 20-29, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37659605

ABSTRACT

Strong xenorejection limits the clinical application of porcine islet transplantation in type 1 diabetes. Targeting T cell-mediated rejection is one of the main approaches to improve long-term graft survival. Here we study engraftment and survival of porcine islet cells expressing human programmed cell death ligand-1 (hPD-L1) in a humanized mouse model. Neonatal islet-like clusters (NPICCs) from transgenic hPD-L1 (hPD-L1-Tg) and wild-type (Wt) pigs were transplanted into nonobese diabetic-scid IL2rγnull mice stably reconstituted with human immune cells (hPD-L1 n = 10; Wt n = 6). Primary endpoint was development of normoglycemia during a 16-week observation period after transplantation. Secondary endpoints were porcine C-peptide levels and immune cell infiltration. Animals transplanted with hPD-L1-Tg neonatal islet-like clusters achieved a superior normoglycemic rate (50% versus 0%) and significantly higher plasma C-peptide levels as compared to the Wt group, indicating long-term beta cell function. Intracytoplasmic fluorescence-activated cell sorting analysis and immunohistochemistry revealed significantly decreased frequencies of interferonγ-expressing splenic hCD8-positive T cells and reduced intragraft-infiltrating immune cells. We here demonstrate that expression of hPD-L1 provides strong islet xenograft protection without administration of immunosuppressive drugs. These findings support the hypothesis that hPD-L1 has the capacity to control cellular rejection and therefore represents a very promising transgene candidate for clinical porcine islet xenotransplantation.


Subject(s)
Diabetes Mellitus , Islets of Langerhans Transplantation , Islets of Langerhans , Mice , Animals , Humans , Swine , B7-H1 Antigen/metabolism , C-Peptide/metabolism , Islets of Langerhans/metabolism , Mice, Knockout , Transplantation, Heterologous , Mice, SCID , Graft Rejection/etiology
3.
Cells ; 10(11)2021 11 19.
Article in English | MEDLINE | ID: mdl-34831471

ABSTRACT

Neonatal porcine islets-like clusters (NPICCs) are a promising source for cell therapy of type 1 diabetes. Freshly isolated NPICCs are composed of progenitor cells and endocrine cells, which undergo a maturation process lasting several weeks until the normal beta cell function has developed. Here, we investigated the effects of short-chain fatty acids on the maturation of islet cells isolated from two to three day-old piglets. NPICCs were cultivated with acetate, butyrate and propionate (0-2000 µM) for one to eight days. Incubation with butyrate resulted in a significant upregulation of insulin gene expression and an increased beta cell number, whereas acetate or propionate had only marginal effects. Treatment with specific inhibitors of G-protein-coupled receptor GPR41 (ß-hydroxybutyrate) and/or GPR43 (GPLG0974) did not abolish butyrate induced insulin expression. However, incubation of NPICCs with class I histone deacetylase inhibitors (HDACi) mocetinostat and MS275, but not selective class II HDACi (TMP269, MC1568) mimicked the butyrate effect on beta cell differentiation. Our study revealed that butyrate treatment has the capacity to increase the number of beta cells, which may be predominantly mediated through its HDAC inhibitory activity. Butyrate and specific class I HDAC inhibitors may represent beneficial supplements to promote differentiation of neonatal porcine islet cells towards beta cells for cell replacement therapies.


Subject(s)
Butyrates/pharmacology , Cell Differentiation/drug effects , Histone Deacetylase Inhibitors/pharmacology , Insulin-Secreting Cells/cytology , Animals , Animals, Newborn , Biomarkers/metabolism , Histone Deacetylases/metabolism , Insulin/genetics , Insulin/metabolism , Insulin-Secreting Cells/drug effects , Protein Binding/drug effects , Receptors, G-Protein-Coupled/metabolism , Swine , Time Factors , Transcription, Genetic/drug effects , Up-Regulation/drug effects , Up-Regulation/genetics
4.
Front Immunol ; 12: 627922, 2021.
Article in English | MEDLINE | ID: mdl-33717148

ABSTRACT

Monocyte chemoattractant protein-induced protein-1 (MCPIP-1) is a potent inhibitor of inflammatory response to pathogens. Acting as endonuclease against transcripts of inflammatory cytokines or transcription factors MCPIP-1 can significantly reduce the cytokine storm, thus limiting the tissue damage. As the adequate resolution of inflammation depends also on the efficient clearance of accumulated neutrophils, we focused on the role of MCPIP-1 in apoptosis and retention of neutrophils. We used peritoneal neutrophils from cell-specific MCPIP-1 knockout mice and showed prolonged survival of these cells. Moreover, we confirmed that MCPIP-1-dependent degradation of transcripts of antiapoptotic genes, including BCL3, BCL2A1, BCL2L1, and for the first time MCL-1, serves as an early event in spontaneous apoptosis of primary neutrophils. Additionally, we identified previously unknown miRNAs as potential binding partners to the MCPIP-1 transcript and their regulation suggest a role in MCPIP-1 half-life and translation. These phenomena may play a role as a molecular switch that balances the MCPIP-1-dependent apoptosis. Besides that, we determined these particular miRNAs as integral components of the GM-CSF-MCPIP-1 axis. Taken together, we identified the novel anti-inflammatory role of MCPIP-1 as a regulator of accumulation and survival of neutrophils that simultaneously promotes an adequate resolution of inflammation.


Subject(s)
Anti-Inflammatory Agents/metabolism , Apoptosis/physiology , Inflammation/metabolism , Animals , Apoptosis Regulatory Proteins/metabolism , Cells, Cultured , Female , Humans , Mice , MicroRNAs , Neutrophils/metabolism , Ribonucleases/metabolism , Transcription Factors/metabolism
5.
J Immunol ; 205(3): 789-800, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32561569

ABSTRACT

Although monosodium urate (MSU) crystals are known to trigger inflammation, published data on soluble uric acid (sUA) in this context are discrepant. We hypothesized that diverse sUA preparation methods account for this discrepancy and that an animal model with clinically relevant levels of asymptomatic hyperuricemia and gouty arthritis can ultimately clarify this issue. To test this, we cultured human monocytes with different sUA preparation solutions and found that solubilizing uric acid (UA) by prewarming created erroneous results because of UA microcrystal contaminants triggering IL-1ß release. Solubilizing UA with NaOH avoided this artifact, and this microcrystal-free preparation suppressed LPS- or MSU crystal-induced monocyte activation, a process depending on the intracellular uptake of sUA via the urate transporter SLC2A9/GLUT9. CD14+ monocytes isolated from hyperuricemic patients were less responsive to inflammatory stimuli compared with monocytes from healthy individuals. Treatment with plasma from hyperuricemic patients impaired the inflammatory function of CD14+ monocytes, an effect fully reversible by removing sUA from hyperuricemic plasma. Moreover, Alb-creERT2;Glut9 lox/lox mice with hyperuricemia (serum UA of 9-11 mg/dl) showed a suppressed inflammatory response to MSU crystals compared with Glut9 lox/lox controls without hyperuricemia. Taken together, we unravel a technical explanation for discrepancies in the published literature on immune effects of sUA and identify hyperuricemia as an intrinsic suppressor of innate immunity, in which sUA modulates the capacity of monocytes to respond to danger signals. Thus, sUA is not only a substrate for the formation of MSU crystals but also an intrinsic inhibitor of MSU crystal-induced tissue inflammation.


Subject(s)
Arthritis, Gouty/immunology , Hyperuricemia/immunology , Monocytes/immunology , Uric Acid/toxicity , Animals , Arthritis, Gouty/chemically induced , Arthritis, Gouty/genetics , Arthritis, Gouty/pathology , Glucose Transport Proteins, Facilitative/genetics , Glucose Transport Proteins, Facilitative/immunology , Humans , Hyperuricemia/chemically induced , Hyperuricemia/genetics , Hyperuricemia/pathology , Inflammation , Mice , Mice, Transgenic , Monocytes/pathology , Solubility
6.
J Am Soc Nephrol ; 30(10): 1857-1869, 2019 10.
Article in English | MEDLINE | ID: mdl-31296606

ABSTRACT

BACKGROUND: Serum oxalate levels suddenly increase with certain dietary exposures or ethylene glycol poisoning and are a well known cause of AKI. Established contributors to oxalate crystal-induced renal necroinflammation include the NACHT, LRR and PYD domains-containing protein-3 (NLRP3) inflammasome and mixed lineage kinase domain-like (MLKL) protein-dependent tubule necroptosis. These studies examined the role of a novel form of necrosis triggered by altered mitochondrial function. METHODS: To better understand the molecular pathophysiology of oxalate-induced AIK, we conducted in vitro studies in mouse and human kidney cells and in vivo studies in mice, including wild-type mice and knockout mice deficient in peptidylprolyl isomerase F (Ppif) or deficient in both Ppif and Mlkl. RESULTS: Crystals of calcium oxalate, monosodium urate, or calcium pyrophosphate dihydrate, as well as silica microparticles, triggered cell necrosis involving PPIF-dependent mitochondrial permeability transition. This process involves crystal phagocytosis, lysosomal cathepsin leakage, and increased release of reactive oxygen species. Mice with acute oxalosis displayed calcium oxalate crystals inside distal tubular epithelial cells associated with mitochondrial changes characteristic of mitochondrial permeability transition. Mice lacking Ppif or Mlkl or given an inhibitor of mitochondrial permeability transition displayed attenuated oxalate-induced AKI. Dual genetic deletion of Ppif and Mlkl or pharmaceutical inhibition of necroptosis was partially redundant, implying interlinked roles of these two pathways of regulated necrosis in acute oxalosis. Similarly, inhibition of mitochondrial permeability transition suppressed crystal-induced cell death in primary human tubular epithelial cells. PPIF and phosphorylated MLKL localized to injured tubules in diagnostic human kidney biopsies of oxalosis-related AKI. CONCLUSIONS: Mitochondrial permeability transition-related regulated necrosis and necroptosis both contribute to oxalate-induced AKI, identifying PPIF as a potential molecular target for renoprotective intervention.


Subject(s)
Acute Kidney Injury/pathology , Mitochondrial Transmembrane Permeability-Driven Necrosis , Necroptosis , Acute Kidney Injury/chemically induced , Animals , Cells, Cultured , Humans , Male , Mice , Oxalates/administration & dosage
7.
Am J Physiol Renal Physiol ; 316(2): F277-F291, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30403164

ABSTRACT

Renal ischemia-reperfusion injury (IRI) leads to acute kidney injury or delayed allograft function, which predisposes to fibrosis in the native kidney or kidney transplant. Here we investigated the role of the signal transducer and activator of transcription 1 (STAT1) in inflammatory responses following renal IRI. Our study showed that a subsequent stimulation of Janus-activated kinase 2/STAT1 and Toll-like receptor 4 pathways led to greater STAT1 activation followed by increased cytokine transcription compared with single-pathway stimulation in murine renal tubular cells. Moreover, we observed increased activation of STAT1 under hypoxic conditions. In vivo, STAT1-/- mice displayed less acute tubular necrosis and decreased macrophage infiltration 24 h after renal ischemia. However, investigation of the healing phase (30 days after IRI) revealed significantly more fibrosis in STAT1-/- than in wild-type kidneys. In addition, we demonstrated increased macrophage infiltration in STAT1-/- kidneys. Flow cytometry analysis revealed that STAT1 deficiency drives an alternatively activated macrophage phenotype, which is associated with downregulated cluster of differentiation 80 expression, decreased intracellular reactive oxygen species production, and enhanced ability for phagocytosis. Furthermore, we detected immunohistochemically enhanced STAT1 expression in human renal allograft biopsies with no interstitial fibrosis/tubular atrophy (IF/TA) compared with specimens with severe IF/TA without specific etiology. Thus, STAT1 activation drives macrophages toward an alternatively activated phenotype and enhances fibrogenesis indicating a potential STAT1-driven protective mechanism in tissue repair after ischemic injury.


Subject(s)
Epithelial Cells/metabolism , Kidney Diseases/metabolism , Kidney Tubules/metabolism , Macrophage Activation , Macrophages/metabolism , Reperfusion Injury/metabolism , STAT1 Transcription Factor/metabolism , Adult , Aged , Animals , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Epithelial Cells/pathology , Female , Fibrosis , Humans , Kidney Diseases/genetics , Kidney Diseases/pathology , Kidney Diseases/prevention & control , Kidney Tubules/pathology , Macrophages/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Phenotype , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Reperfusion Injury/prevention & control , STAT1 Transcription Factor/deficiency , STAT1 Transcription Factor/genetics , Signal Transduction
8.
Physiol Rep ; 6(16): e13817, 2018 08.
Article in English | MEDLINE | ID: mdl-30156011

ABSTRACT

IL-22, a member of the IL-10 cytokine family, accelerates tubule regeneration upon acute kidney injury, hence we speculated on a protective role also in chronic kidney disease. We quantified intrarenal IL-22 expression after unilateral ureteral (UUO) in wild-type mice and performed UUO in IL-22 knock-out animals. Obstruction phenotypic differences between IL22+/+ and IL22-/- mice were assessed by histology, immunohistochemistry, immunofluorescence as well as western blotting and reverse-transcriptase quantitative PCR ex vivo. Additionally, we performed in vitro experiments using both murine and human tubular cells to characterize IL-22 effects in epithelial healing. We found increasing IL-22 positivity in infiltrating immune cells over time upon UUO in wild-type mice. UUO in IL22-/- mice caused more tubular cell injury as defined by TUNEL positive cells and loss of tetragonolobus lectin staining. Instead, tubular dilation, loss of CD31+ perivascular capillaries, and interstitial fibrosis were independent of the Il22 genotype as assessed by standard histology, immunostaining, and mRNA expression profiling. In vitro experiments showed that recombinant human IL-22 significantly enhanced human tubular epithelial cell proliferation and wound closure upon mechanical injury, and electric cell-substrate impedance sensing studies revealed that recombinant IL-22 sustained tubular epithelial barrier function upon injury. In contrast, IL-22 had no such direct effects on human fibroblasts. Together, in progressive kidney remodeling upon UUO, infiltrating immune cells secrete IL-22, which augments tubular epithelial integrity and epithelial barrier function, but does not affect vascular rarefaction or fibrogenesis. We conclude that IL-22 could represent a molecular target to specifically modulate tubular atrophy.


Subject(s)
Interleukins/immunology , Kidney/pathology , Renal Insufficiency, Chronic/immunology , Animals , Cells, Cultured , Disease Progression , Fibroblasts/immunology , Fibrosis/etiology , Fibrosis/immunology , Gene Expression Profiling/methods , Humans , Interleukins/deficiency , Mice, Inbred BALB C , Mice, Knockout , RNA, Messenger/genetics , Recombinant Proteins/pharmacology , Renal Insufficiency, Chronic/etiology , Ureteral Obstruction/complications , Interleukin-22
9.
Sci Rep ; 8(1): 12169, 2018 08 15.
Article in English | MEDLINE | ID: mdl-30111809

ABSTRACT

Acute and chronic kidney injuries are multifactorial traits that involve various risk factors. Experimental animal models are crucial to unravel important aspects of injury and its pathophysiological mechanisms. Translating knowledge obtained from experimental approaches into clinically useful information is difficult; therefore, significant attention needs to be paid to experimental procedures that mimic human disease. Herein, we compared aristolochic acid I (AAI) acute and chronic kidney injury model with unilateral ischemic-reperfusion injury (uIRI), cisplatin (CP)- or folic acid (FA)-induced renal damage. The administration of AAI showed significant changes in serum creatinine and BUN upon CKD. The number of neutrophils and macrophages were highly increased as well as AAI-induced CKD characterized by loss of tubular epithelial cells and fibrosis. The in vitro and in vivo data indicated that macrophages play an important role in the pathogenesis of AA-induced nephropathy (AAN) associated with an excessive macrophage accumulation and an alternative activated macrophage phenotype. Taken together, we conclude that AA-induced injury represents a suitable and relatively easy model to induce acute and chronic kidney injury. Moreover, our data indicate that this model is appropriate and superior to study detailed questions associated with renal macrophage phenotypes.


Subject(s)
Aristolochic Acids/metabolism , Kidney Diseases/metabolism , Macrophage Activation/physiology , Acute Kidney Injury/pathology , Animals , Aristolochic Acids/physiology , Cisplatin/pharmacology , Disease Models, Animal , Female , Fibrosis , Folic Acid/pharmacology , Kidney/pathology , Kidney Diseases/physiopathology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Phenotype , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/physiopathology
10.
J Immunol Res ; 2018: 4126106, 2018.
Article in English | MEDLINE | ID: mdl-29854836

ABSTRACT

Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), represent a family of RNA molecules that do not translate into protein. Nevertheless, they have the ability to regulate gene expression and play an essential role in immune cell differentiation and function. MicroRNAs were found to be differentially expressed in various tissues, and changes in their expression have been associated with several pathological processes. Yet, their roles in systemic lupus erythematosus (SLE) and lupus nephritis (LN) remain to be elucidated. Both SLE and LN are characterized by a complex dysfunction of the innate and adaptive immunity. Recently, significant findings have been made in understanding SLE through the use of genetic variant identification and expression pattern analysis and mouse models, as well as epigenetic analyses. Abnormalities in immune cell responses, cytokine and chemokine production, cell activation, and apoptosis have been linked to a unique expression pattern of a number of miRNAs that have been implicated in the immune pathogenesis of this autoimmune disease. The recent evidence that significantly increased the understanding of the pathogenesis of SLE drives a renewed interest in efficient therapy targets. This review aims at providing an overview of the current state of research on the expression and role of miRNAs in the immune pathogenesis of SLE and LN.


Subject(s)
Lupus Erythematosus, Systemic/genetics , Lupus Nephritis/genetics , MicroRNAs/genetics , Adaptive Immunity , Animals , Disease Models, Animal , Humans , Immunity, Innate , Immunomodulation , Mice
11.
Sci Rep ; 8(1): 6663, 2018 Apr 24.
Article in English | MEDLINE | ID: mdl-29691453

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

12.
Kidney Int ; 93(3): 656-669, 2018 03.
Article in English | MEDLINE | ID: mdl-29241624

ABSTRACT

Primary/secondary hyperoxalurias involve nephrocalcinosis-related chronic kidney disease (CKD) leading to end-stage kidney disease. Mechanistically, intrarenal calcium oxalate crystal deposition is thought to elicit inflammation, tubular injury and atrophy, involving the NLRP3 inflammasome. Here, we found that mice deficient in NLRP3 and ASC adaptor protein failed to develop nephrocalcinosis, compromising conclusions on nephrocalcinosis-related CKD. In contrast, hyperoxaluric wild-type mice developed profound nephrocalcinosis. NLRP3 inhibition using the ß-hydroxybutyrate precursor 1,3-butanediol protected such mice from nephrocalcinosis-related CKD. Interestingly, the IL-1 inhibitor anakinra had no such effect, suggesting IL-1-independent functions of NLRP3. NLRP3 inhibition using 1,3-butanediol treatment induced a shift of infiltrating renal macrophages from pro-inflammatory (CD45+F4/80+CD11b+CX3CR1+CD206-) and pro-fibrotic (CD45+F4/80+CD11b+CX3CR1+CD206+TGFß+) to an anti-inflammatory (CD45+F4/80+CD11b+CD206+TGFß-) phenotype, and prevented renal fibrosis. Finally, in vitro studies with primary murine fibroblasts confirmed the non-redundant role of NLRP3 in the TGF-ß signaling pathway for fibroblast activation and proliferation independent of the NLRP3 inflammasome complex formation. Thus, nephrocalcinosis-related CKD involves NLRP3 but not necessarily via intrarenal IL-1 release but rather via other biological functions including TGFR signaling and macrophage polarization. Hence, NLRP3 may be a promising therapeutic target in hyperoxaluria and nephrocalcinosis.


Subject(s)
Cell Plasticity , Hyperoxaluria/metabolism , Inflammasomes/metabolism , Interleukin-1/metabolism , Kidney/metabolism , Macrophages/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nephrocalcinosis/metabolism , Renal Insufficiency, Chronic/metabolism , Animals , Butylene Glycols/pharmacology , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/metabolism , Cell Plasticity/drug effects , Cells, Cultured , Disease Models, Animal , Female , Fibroblasts/immunology , Fibroblasts/metabolism , Fibroblasts/pathology , Hyperoxaluria/drug therapy , Hyperoxaluria/immunology , Hyperoxaluria/pathology , Inflammasomes/drug effects , Inflammasomes/genetics , Inflammasomes/immunology , Interleukin-1/immunology , Kidney/immunology , Kidney/pathology , Macrophages/drug effects , Macrophages/immunology , Macrophages/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Nephrocalcinosis/immunology , Nephrocalcinosis/pathology , Nephrocalcinosis/prevention & control , Phenotype , Receptors, Transforming Growth Factor beta/metabolism , Renal Insufficiency, Chronic/immunology , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/prevention & control , Signal Transduction
13.
Sci Rep ; 7(1): 15003, 2017 11 03.
Article in English | MEDLINE | ID: mdl-29101355

ABSTRACT

The human body is exposed to a wide range of particles of industrial, environmental or internal origin such as asbestos, alum, silica or crystals of urate, calcium phosphate, calcium oxalate, cystine or cholesterol. Phagocytic clearance of such particles involves neutrophils and macrophages. Here we report that neutrophils encountering such particles of diverse sizes and shapes undergo necrotic cell death, a process associated with the formation of neutrophil extracellular trap (NET)-like extracellular DNA. In human neutrophils receptor-interacting protein kinase (RIPK)-1 inhibition with necrostatin-1s or mixed lineage kinase domain-like (MLKL) inhibition with necrosulfonamide abrogated cell death and associated-neutrophil extracellular DNA release induced by all of the aforementioned particles. Similar results were obtained with Mlkl-deficient mice neutrophils for all particles in vitro. Furthermore, Mlkl-deficient mice lacked tophus formation upon injection of MSU crystals into subcutaneous air pouches. These findings imply that nano- or microparticle-induced neutrophil extracellular DNA release is the consequence of neutrophil necroptosis, a regulated form of cell necrosis defined by RIPK1-RIPK3-MLKL signaling. Interestingly, this finding was consistent across different particle sizes and shapes. The RIPK1-RIPK3-MLKL signaling pathway may represent a potential therapeutic target in nano- or microparticle-related diseases (crystallopathies).


Subject(s)
Cell Death/drug effects , Chromatin/metabolism , Extracellular Traps/drug effects , Necrosis/metabolism , Neutrophils/drug effects , Animals , Calcium Oxalate/pharmacology , Calcium Phosphates/pharmacology , Cell Death/physiology , Cholesterol/pharmacology , Extracellular Traps/metabolism , Humans , Mice , Necrosis/pathology , Neutrophils/metabolism , Neutrophils/pathology , Silicon Dioxide/pharmacology , Uric Acid/pharmacology
14.
Sci Rep ; 7(1): 15523, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-29138474

ABSTRACT

In crystallopathies, crystals or crystalline particles of environmental and metabolic origin deposit within tissues, induce inflammation, injury and cell death and eventually lead to organ-failure. The NLRP3-inflammasome is involved in mediating crystalline particles-induced inflammation, but pathways leading to cell death are still unknown. Here, we have used broad range of intrinsic and extrinsic crystal- or crystalline particle-sizes and shapes, e.g. calcium phosphate, silica, titanium dioxide, cholesterol, calcium oxalate, and monosodium urate. As kidney is commonly affected by crystallopathies, we used human and murine renal tubular cells as a model system. We showed that all of the analysed crystalline particles induce caspase-independent cell death. Deficiency of MLKL, siRNA knockdown of RIPK3, or inhibitors of necroptosis signaling e.g. RIPK-1 inhibitor necrostatin-1s, RIPK3 inhibitor dabrafenib, and MLKL inhibitor necrosulfonamide, partially protected tubular cells from crystalline particles cytotoxicity. Furthermore, we identify phagocytosis of crystalline particles as an upstream event in their cytotoxicity since a phagocytosis inhibitor, cytochalasin D, prevented their cytotoxicity. Taken together, our data confirmed the involvement of necroptosis as one of the pathways leading to cell death in crystallopathies. Our data identified RIPK-1, RIPK3, and MLKL as molecular targets to limit tissue injury and organ failure in crystallopathies.


Subject(s)
Apoptosis/drug effects , Gene Expression Regulation/drug effects , Necrosis/genetics , Particulate Matter/toxicity , Phagocytosis/drug effects , Animals , Apoptosis/genetics , Calcium Oxalate/chemistry , Calcium Oxalate/toxicity , Calcium Phosphates/chemistry , Calcium Phosphates/toxicity , Cell Line , Cholesterol/chemistry , Cholesterol/toxicity , Crystallization , Cytochalasin D/pharmacology , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Humans , Imidazoles/pharmacology , Indoles/pharmacology , Inflammasomes/drug effects , Inflammasomes/metabolism , Kidney Tubules/cytology , Kidney Tubules/drug effects , Kidney Tubules/metabolism , Mice , Necrosis/chemically induced , Necrosis/metabolism , Necrosis/pathology , Oximes/pharmacology , Particle Size , Particulate Matter/chemistry , Primary Cell Culture , Protein Kinases/deficiency , Protein Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Silicon Dioxide/chemistry , Silicon Dioxide/toxicity , Titanium/chemistry , Titanium/toxicity , Uric Acid/chemistry , Uric Acid/toxicity
15.
Biosci Rep ; 37(6)2017 12 22.
Article in English | MEDLINE | ID: mdl-29054964

ABSTRACT

Notch and interleukin-22 (IL-22) signaling are known to regulate tissue homeostasis and respond to injury in humans and mice, and the induction of endogenous aryl hydrocarbon receptor (Ahr) ligands through Notch links the two pathways in a hierarchical fashion. However in adults, the species-, organ- and injury-specific gene expression of the Notch-AhR-IL22 axis components is unknown. We therefore performed gene expression profiling of DLL1, DLL3, DLL4, DLK1, DLK2, JAG1, JAG2, Notch1, Notch2, Notch3, Notch4, ADAM17/TNF-α ADAM metalloprotease converting enzyme (TACE), PSEN1, basigin (BSG)/CD147, RBP-J, HES1, HES5, HEY1, HEYL, AHR, ARNT, ARNT2, CYP1A1, CYP24A1, IL-22, IL22RA1, IL22RA2, IL10RB, and STAT3 under homeostatic conditions in ten mature murine and human organs. Additionally, the expression of these genes was assessed in murine models of acute sterile inflammation and progressive fibrosis. We show that there are organ-specific gene expression profiles of the Notch-AhR-IL22 axis in humans and mice. Although there is an overall interspecies congruency, specific differences between human and murine expression signatures do exist. In murine tissues with AHR/ARNT expression CYP1A1 and IL-22 were correlated with HES5 and HEYL expression, while in human tissues no such correlation was found. Notch and AhR signaling are involved in renal inflammation and fibrosis with specific gene expression changes in each model. Despite the presence of all Notch pathway molecules in the kidney and a model-specific induction of Notch ligands, IL-22 was only up-regulated in acute inflammation, but rapidly down-regulated during regeneration. This implies that for targeting injury responses, e.g. via IL-22, species-specific differences, injury type and time points have to be considered.


Subject(s)
Acute Kidney Injury/genetics , Inflammation/genetics , Interleukins/genetics , Receptors, Aryl Hydrocarbon/genetics , Acute Kidney Injury/pathology , Animals , Basic Helix-Loop-Helix Transcription Factors/economics , Basic Helix-Loop-Helix Transcription Factors/genetics , Cytochrome P-450 CYP1A1/genetics , Gene Expression Profiling/methods , Gene Expression Regulation , Humans , Inflammation/physiopathology , Mice , Receptors, Notch/genetics , Repressor Proteins/economics , Signal Transduction/genetics , Interleukin-22
16.
J Biomed Sci ; 24(1): 77, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28927419

ABSTRACT

BACKGROUND: Several tumour necrosis factor (TNF) based therapeutics have already been approved for human use and several others are emerging. Therefore, we determined the mRNA expression levels of the TNF superfamily ligands (TNFSF) - e.g. TNF-α, lymphotoxin (LT)-α, LT-ß, Fas-L (CD95-L), TNF-related apoptosis-inducing ligand (TRAIL), TNF-related weak inducer of apoptosis (TWEAK), 4-1BBL, OX40-L (CD252) and amyloid precursor protein (APP) in healthy human and mouse solid organs. METHODS: We used quantitative real time-PCR to analyse mRNA expression levels of TNFSF ligands. Murine models of acute ischemic renal injury, chronic oxalate nephropathy, and immune complex glomerulonephritis were used. Renal injury was assessed by PAS staining, and infiltrating immune cells were analysed by immunohistochemistry. Data was analysed using non-parametric ANOVA (non-parametric; Kruskal-Wallis test). RESULTS: We observed significant differences in the mRNA expression levels of TNFSF ligands in human and mouse solid organs. Furthermore, we determined their mRNA expressions during acute and chronic kidney injuries in mice. Our data demonstrate that the mRNA expression levels of TNFSF vary depending on the type of tissue injury - for example, acute ischemic renal injury, chronic crystalline nephropathy, and immune complex glomerulonephritis. In addition, we observed that mRNA expressions of TNFSF ligands are differentially regulated during the course of a transient ischemic renal injury (IRI) and chronic kidney modelling. We observed that TNF-α, LT-ß, and 4-1BBL were significantly upregulated during the progression of IRI and crystal-induced chronic kidney disease (CKD), whereas only 4-1BBL and TNF-α were significantly upregulated and LT-ß was significantly downregulated during the progression of immune complex glomerulonephritis. The mRNA expression of Fas-L was higher during IRI whereas it decreased in a time dependent manner during the progression of crystal-induced CKD. CONCLUSION: We conclude that the injury- and species-specific differences of TNFSF ligands must be considered in order to avoid the misinterpretation and wrong conclusions during data extrapolation between species.


Subject(s)
Homeostasis , Kidney/metabolism , Transcriptome , Tumor Necrosis Factors/genetics , Animals , Humans , Kidney/injuries , Ligands , Mice , Organ Specificity , RNA, Messenger/genetics , RNA, Messenger/metabolism , Species Specificity , Tumor Necrosis Factors/metabolism
17.
J Immunol ; 199(4): 1440-1452, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28701510

ABSTRACT

Activation of various innate immune receptors results in IL-1 receptor-associated kinase (IRAK)-1/IRAK-4-mediated signaling and secretion of proinflammatory cytokines such as IL-12, IL-6, or TNF-α, all of which are implicated in tissue injury and elevated during tissue remodeling processes. IRAK-M, also known as IRAK-3, is an inhibitor of proinflammatory cytokine and chemokine expression in intrarenal macrophages. Innate immune activation contributes to both acute kidney injury and tissue remodeling that is associated with chronic kidney disease (CKD). Our study assessed the contribution of macrophages in CKD and the role of IRAK-M in modulating disease progression. To evaluate the effect of IRAK-M in chronic renal injury in vivo, a mouse model of unilateral ureteral obstruction (UUO) was employed. The expression of IRAK-M increased within 2 d after UUO in obstructed compared with unobstructed kidneys. Mice deficient in IRAK-M were protected from fibrosis and displayed a diminished number of alternatively activated macrophages. Compared to wild-type mice, IRAK-M-deficient mice showed reduced tubular injury, leukocyte infiltration, and inflammation following renal injury as determined by light microscopy, immunohistochemistry, and intrarenal mRNA expression of proinflammatory and profibrotic mediators. Taken together, these results strongly support a role for IRAK-M in renal injury and identify IRAK-M as a possible modulator in driving an alternatively activated profibrotic macrophage phenotype in UUO-induced CKD.


Subject(s)
Fibrosis/immunology , Interleukin-1 Receptor-Associated Kinases/immunology , Kidney/pathology , Macrophage Activation , Macrophages/cytology , Macrophages/immunology , Renal Insufficiency, Chronic/immunology , Animals , Cytokines/immunology , Disease Models, Animal , Disease Progression , Fibrosis/pathology , Humans , Immunomodulation , Inflammation/pathology , Interleukin-1 Receptor-Associated Kinases/deficiency , Interleukin-1 Receptor-Associated Kinases/genetics , Kidney/immunology , Mice , Mice, Inbred C57BL , Signal Transduction , Tumor Necrosis Factor-alpha/immunology , Ureteral Obstruction/pathology
18.
Biosci Rep ; 36(6)2016 12.
Article in English | MEDLINE | ID: mdl-27811014

ABSTRACT

The species-specific, as well as organ-specific expression of regulated necrosis (RN)-related molecules, is not known. We determined the expression levels of tumour necrosis factor receptor-1 (TNFR1), receptor activated protein kinase (RIPK)1, RIPK3, mixed lineage kinase domain-like (MLKL), CASP8, Fas-associated protein with death domain (FADD), cellular inhibitor of apoptosis protein (CIAP)1, CIAP2, glutathione peroxidase-4 (GPX4), cyclophilin D (CYPD), CASP1, NLRP3 and poly(ADP-ribose) polymerase-1 (PARP1) in human and mouse solid organs. We observed significant differences in expression of these molecules between human and mice. In addition, we characterized their expression profiles in acute as well as persistent tissue injury and chronic tissue remodelling using acute and chronic kidney injury models. We observed that the degree and pattern of induction of RN-related molecules were highly dependent on the trigger and disease pathogenesis. Furthermore, we studied their expression patterns in mice with lupus-like systemic autoimmunity, which revealed that the expression of MLKL, GPX4 and PARP1 significantly increased in the spleen along disease progression and CASP1, RIPK1, RIPK3 and CYPD were higher at the earlier stages but were significantly decreased in the later stages. In contrast, in the kidney, the expression of genes involved in pyroptosis, e.g. NLRP3 and CASP1 were significantly increased and TNFR1, RIPK1, RIPK3, CIAP1/2 and GPX4 were significantly decreased along the progression of lupus nephritis (LN). Thus, the organ- and species-specific expression of RN-related molecules should be considered during designing experiments, interpreting the results as well as extrapolating the conclusions from one species or organ to another species or organ respectively.


Subject(s)
Autoimmunity/physiology , Fibrosis/metabolism , Fibrosis/pathology , Necrosis/metabolism , Necrosis/pathology , RNA, Messenger/metabolism , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Apoptosis/physiology , Apoptosis Regulatory Proteins/metabolism , Disease Models, Animal , Disease Progression , Humans , Lupus Nephritis/metabolism , Lupus Nephritis/pathology , Male , Mice , Mice, Inbred C57BL , Protein Kinases/metabolism , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Signal Transduction/physiology , Spleen/metabolism , Spleen/pathology , Transcriptome/physiology
19.
Gene ; 552(2): 255-64, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25261849

ABSTRACT

BACKGROUND: MicroRNAs are small non-coding RNAs that regulate post-transcriptional mRNA expression by binding to 3' untranslated region (3'-UTR) of the complementary mRNA sequence resulting in translational repression and gene silencing. They act as negative regulators of gene expression and play a pivotal role in regulating apoptosis and cell proliferation. Studies have shown that miRNAs interact with p53 by regulating the activity and function of p53 through direct repression or its regulators. Mammalian target of rapamycin (mTOR) is an evolutionary conserved check point protein kinase that plays a major effect in the control of cell division via protein synthesis regulation. mTOR regulates protein synthesis through phosphorylation and inactivation of 4E-BP1 and through phosphorylation and activation of S6 kinase 1 (S6K1). These two downstream effectors of mTOR control cell growth and metabolism. In mammals, mTOR protein kinase is the central node in the nutrient and growth factor signaling and p53 plays a critical role in sensing genotoxic stress. Activation of p53 inhibits mTOR activity, which in turn regulates its downstream targets providing a cross talk among both the signaling machinery. MicroRNA-15 and 16 belong to a common precursor family and are highly conserved. Deletion or downregulation of these two microRNAs has been shown to accelerate cell division by modulating the expression of the genes involved in controlling cell cycle progression. These microRNAs may function as tumor suppressors and act on the downstream targets of p53 signaling pathway. To have a better insight of the role of miR-15/16 in regulating the cross talk of p53 and mTOR, we performed an in depth study in MDA-MB-231 breast cancer cells by performing a gain-of-function analysis with lentiviral plasmids expressing microRNA-15 and 16. METHODS: The effect of individual microRNAs on RPS6KB1 was examined by using 3'-UTR clones via luciferase based assays. The cell cycle effects were observed by flow-cytometric analysis. Reverse transcription PCR was used to explore the expression of mTOR and RPS6KB1 in cells transfected with miR-15/16. RESULTS: Overexpression of miR-15/16 led to inhibition of cell proliferation causing G1 cell cycle arrest as well as caspase-3 dependent apoptosis. Forced expression of miR-15/16 might lead to decrease in mRNA level of RPS6KB1, mTOR. The effect was a complete reversal after treatment with anti-miRs against miR-15/16 proving the specificity of the expression. In addition, the dual luciferase reporter assays indicated a clear decrease in luciferase gene expression in cells transfected with lentiviral based miR-15 and 16 plasmids indicating that miR-15/16 directly targets RPS6KB1 through its 3'-UTR binding. Further, these microRNAs also inhibit epithelial to mesenchymal transition (EMT) by targeting key proteins such as Twist1 and EZH2 clearly demonstrating its crucial role in controlling cell proliferation. CONCLUSION: This study suggests that exogenous microRNA-15/16 can target RPS6KB1, control cell proliferation and cause apoptosis in caspase-dependent manner even in the absence of functional p53.


Subject(s)
Cell Proliferation , MicroRNAs/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/genetics , 3' Untranslated Regions , Apoptosis , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Humans , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...