Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Front Neurol ; 15: 1408220, 2024.
Article in English | MEDLINE | ID: mdl-38882697

ABSTRACT

Introduction: The role of lipopolysaccharide binding protein (LBP), an inflammation marker of bacterial translocation from the gastrointestinal tract, in Alzheimer's disease (AD) is not clearly understood. Methods: In this study the concentrations of LBP were measured in n = 79 individuals: 20 apolipoprotein E (APOE)3/E3 carriers with and 20 without AD dementia, and 19 APOE3/E4 carriers with and 20 without AD dementia. LBP was found to be enriched in the 1.21-1.25 g/mL density fraction of plasma, which has previously been shown to be enriched in intestinally derived high-density lipoproteins (HDL). LBP concentrations were measured by ELISA. Results: LBP was significantly increased within the 1.21-1.25 g/mL density fraction of plasma in APOE3/E3 AD patients compared to controls, but not APOE3/E4 patients. LBP was positively correlated with Clinical Dementia Rating (CDR) and exhibited an inverse relationship with Verbal Memory Score (VMS). Discussion: These results underscore the potential contribution of gut permeability to bacterial toxins, measured as LBP, as an inflammatory mediator in the development of AD, particularly in individuals with the APOE3/E3 genotype, who are genetically at 4-12-fold lower risk of AD than individuals who express APOE4.

2.
Antioxidants (Basel) ; 13(5)2024 May 18.
Article in English | MEDLINE | ID: mdl-38790721

ABSTRACT

High-density lipoproteins (HDLs) are key regulators of cellular cholesterol homeostasis but are functionally altered in many chronic diseases. The factors that cause HDL functional loss in chronic disease are not fully understood. It is also unknown what roles antioxidant carotenoids play in protecting HDL against functional loss. The aim of this study was to measure how various disease-associated chemical factors including exposure to (1) Cu2+ ions, (2) hypochlorous acid (HOCL), (3) hydrogen peroxide (H2O2), (4) sialidase, (5) glycosidase, (6) high glucose, (7) high fructose, and (8) acidic pH, and the carotenoid antioxidants (9) lutein and (10) zeaxanthin affect HDL functionality. We hypothesized that some of the modifications would have stronger impacts on HDL particle structure and function than others and that lutein and zeaxanthin would improve HDL function. HDL samples were isolated from generally healthy human plasma and incubated with the corresponding treatments listed above. Cholesterol efflux capacity (CEC), lecithin-cholesterol acyl transferase (LCAT) activity, and paraoxonase-1 (PON1) activity were measured in order to determine changes in HDL functionality. Median HDL particle diameter was increased by acidic pH treatment and reduced by HOCl, high glucose, high fructose, N-glycosidase, and lutein treatments. Acidic pH, oxidation, and fructosylation all reduced HDL CEC, whereas lutein, zeaxanthin, and sialidase treatment improved HDL CEC. LCAT activity was reduced by acidic pH, oxidation, high fructose treatments, and lutein. PON1 activity was reduced by sialidase, glycosidase, H2O2, and fructose and improved by zeaxanthin and lutein treatment. These results show that exposure to oxidizing agents, high fructose, and low pH directly impairs HDL functionality related to cholesterol efflux and particle maturation, whereas deglycosylation impairs HDL antioxidant capacity. On the other hand, the antioxidants lutein and zeaxanthin improve or preserve both HDL cholesterol efflux and antioxidant activity but have no effect on particle maturation.

3.
Curr Dev Nutr ; 7(12): 102041, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38130330

ABSTRACT

Background: Small-quantity lipid-based nutrient supplements (SQ-LNS) during pregnancy and postnatally were previously shown to improve high-density lipoprotein (HDL) cholesterol efflux capacity (CEC) and length in the children of supplemented mothers at 18 mo of age in the International Lipid-Based Nutrient Supplements (iLiNS) DYAD trial in Ghana. However, the effects of SQ-LNS on maternal HDL functionality during pregnancy are unknown. Objective: The goal of this cross-sectional, secondary outcome analysis was to compare HDL function in mothers supplemented with SQ-LNS vs. iron and folic acid (IFA) during gestation. Methods: HDL CEC and the activities of 3 HDL-associated enzymes were analyzed in archived plasma samples (N = 197) from a subsample of females at 36 weeks of gestation enrolled in the iLiNS-DYAD trial in Ghana. Correlations between HDL function and birth outcomes, inflammatory markers C-reactive protein (CRP) and alpha-1-acid glycoprotein (AGP), and the effects of season were explored to determine the influence of these factors on HDL function in this cohort of pregnant females. Results: There were no statistically significant differences in HDL CEC, plasma lecithin-cholesterol acyltransferase (LCAT) activity, cholesteryl ester transfer protein (CETP) activity, or phospholipid transfer protein (PLTP) activity between mothers supplemented with SQ-LNS compared with IFA control, and no statistically significant relationships between maternal HDL function and childbirth outcomes. LCAT activity was negatively correlated with plasma AGP (R = -0.19, P = 0.007) and CRP (R = -0.28, P < 0.001), CETP and LCAT activity were higher during the dry season compared to the wet season, and PLTP activity was higher in the wet season compared to the dry season. Conclusions: Mothers in Ghana supplemented with SQ-LNS compared with IFA during gestation did not have measurable differences in HDL functionality, and maternal HDL function was not associated with childbirth outcomes. However, seasonal factors and markers of inflammation were associated with HDL function, indicating that these factors had a stronger influence on HDL functionality than SQ-LNS supplementation during pregnancy. Clinical Trial Registry number: The study was registered as NCT00970866. https://clinicaltrials.gov/study/NCT00970866.

4.
CMAJ ; 195(41): E1399-E1411, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37871953

ABSTRACT

BACKGROUND: Higher doses of opioids, mental health comorbidities, co-prescription of sedatives, lower socioeconomic status and a history of opioid overdose have been reported as risk factors for opioid overdose; however, the magnitude of these associations and their credibility are unclear. We sought to identify predictors of fatal and nonfatal overdose from prescription opioids. METHODS: We systematically searched MEDLINE, Embase, CINAHL, PsycINFO and Web of Science up to Oct. 30, 2022, for observational studies that explored predictors of opioid overdose after their prescription for chronic pain. We performed random-effects meta-analyses for all predictors reported by 2 or more studies using odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS: Twenty-eight studies (23 963 716 patients) reported the association of 103 predictors with fatal or nonfatal opioid overdose. Moderate- to high-certainty evidence supported large relative associations with history of overdose (OR 5.85, 95% CI 3.78-9.04), higher opioid dose (OR 2.57, 95% CI 2.08-3.18 per 90-mg increment), 3 or more prescribers (OR 4.68, 95% CI 3.57-6.12), 4 or more dispensing pharmacies (OR 4.92, 95% CI 4.35-5.57), prescription of fentanyl (OR 2.80, 95% CI 2.30-3.41), current substance use disorder (OR 2.62, 95% CI 2.09-3.27), any mental health diagnosis (OR 2.12, 95% CI 1.73-2.61), depression (OR 2.22, 95% CI 1.57-3.14), bipolar disorder (OR 2.07, 95% CI 1.77-2.41) or pancreatitis (OR 2.00, 95% CI 1.52-2.64), with absolute risks among patients with the predictor ranging from 2-6 per 1000 for fatal overdose and 4-12 per 1000 for nonfatal overdose. INTERPRETATION: We identified 10 predictors that were strongly associated with opioid overdose. Awareness of these predictors may facilitate shared decision-making regarding prescribing opioids for chronic pain and inform harm-reduction strategies SYSTEMATIC REVIEW REGISTRATION: Open Science Framework (https://osf.io/vznxj/).


Subject(s)
Chronic Pain , Drug Overdose , Opiate Overdose , Humans , Analgesics, Opioid/therapeutic use , Chronic Pain/drug therapy , Drug Overdose/drug therapy , Opiate Overdose/complications , Opiate Overdose/drug therapy , Prescriptions , Observational Studies as Topic
5.
Int J Mol Sci ; 24(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37894984

ABSTRACT

The function of high-density lipoprotein (HDL) particles has emerged as a promising therapeutic target and the measurement of HDL function is a promising diagnostic across several disease states. The vast majority of research on HDL functional biology has focused on adult participants with underlying chronic diseases, whereas limited research has investigated the role of HDL in childhood, pregnancy, and old age. Yet, it is apparent that functional HDL is essential at all life stages for maintaining health. In this review, we discuss current data regarding the role of HDL during childhood, pregnancy and in the elderly, how disturbances in HDL may lead to adverse health outcomes, and knowledge gaps in the role of HDL across these life stages.


Subject(s)
Longevity , Adult , Pregnancy , Female , Humans , Aged , Cholesterol, HDL
6.
Plast Surg (Oakv) ; 31(3): 287-292, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37654538

ABSTRACT

Introduction: Children with single suture craniosynostosis (SSC) are at risk for neurocognitive problems. The reported magnitude of differences between children with SSC and their normative peers on standardized tests of academic and intellectual ability are small. Evaluation of real-world academic outcomes of these children and its impact on educational resources have not been conducted. Methods: A retrospective cohort study of academic outcomes of children with SSC was conducted using the data from Ontario's Education Quality and Accountability Office (EQAO) standardized provincial reading, writing and mathematics tests. The need for special education was identified by documentation of the child's need for an Identification, Placement, and Review Committee (IPRC). Results: Of 296 eligible children, 42 participated in the study. Half of the children had sagittal synostosis, while the remaining were 10 (24%) unicoronal, 9 (21%) metopic, and 2 (5%) lambdoid synostosis. Thirty-six (86%) underwent operative management. The EQAO scores of operated children with SSC met the provincial academic standards on the Grade 3 and 6 EQAO scores across the 3 academic subjects. Converted grade-matched EQAO scores decreased in reading and writing over time, while math improved. Of the 21 patients with special education data, one child required an IPRC in Grade 3, while an additional four (24%) required an IPRC in Grade 6. Conclusions: Operated children with SSC had average academic performance, however, their needs appeared to change over time. Future studies are needed to evaluate academic difficulties and special education needs as these children progress through grade school.


Introduction: Les enfants ayant une craniosynostose simple (CSS) sont à risque de troubles neurocognitifs. Selon les tests standardisés des capacités scolaires et intellectuelles, les enfants ayant une CSS présentent des différences légères par rapport à leurs homologues en bonne santé. Les résultats scolaires concrets de ces enfants n'ont pas été évalués, ni leurs répercussions sur les ressources pédagogiques. Méthodologie: Les chercheurs ont effectué une étude de cohorte rétrospective des résultats des enfants ayant une CSS aux examens de lecture, d'écriture et de mathématique au moyen des données provinciales standardisées de l'Office de la qualité et de la responsabilité en éducation de l'Ontario (OQRÉO). Les besoins en éducation spécialisée étaient indiqués par un avis du comité d'identification, de placement et de révision (CIPR) au dossier de l'enfant. Résultats: Des 296 enfants admissibles, 42 ont participé à l'étude. La moitié des enfants présentaient une synostose sagittale (scaphocéphalie), tandis que dix (24 %) avaient une synostose unicoronale, neuf (21 %), une synostose métopique (trigonocéphalie), et deux (5 %), une synostose lambdoïde. Au total, 36 (86 %) ont été opérés. Les scores de l'OQRÉO des enfants opérés à cause d'une CSS respectaient les normes scolaires provinciales pour la 3e et la 6e années dans les trois matières scolaires. Les scores de l'OQRÉO convertis en fonction du degré ont diminué en lecture et en écriture au fil du temps, mais se sont améliorés en mathématiques. Des 21 patients sur qui les chercheurs possédaient des données en éducation spécialisée, un enfant a eu besoin d'un avis du CIPR en 3e année, et quatre (24 %), en 6e année. Conclusions: Les enfants opérés à cause d'une CSS avaient une performance scolaire moyenne, mais leurs besoins semblaient évoluer au fil du temps. D'autres études devront être réalisées pour évaluer les problèmes scolaires et les besoins d'éducation spécialisée des enfants au primaire.

7.
Curr Atheroscler Rep ; 25(10): 663-677, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37702886

ABSTRACT

PURPOSE OF REVIEW: Emerging evidence supports the promise of precision nutritional approaches for cardiovascular disease (CVD) prevention. Here, we discuss current findings from precision nutrition trials and studies reporting substantial inter-individual variability in responses to diets and dietary components relevant to CVD outcomes. We highlight examples where early precision nutrition research already points to actionable intervention targets tailored to an individual's biology and lifestyle. Finally, we make the case for high-density lipoproteins (HDL) as a compelling next generation target for precision nutrition aimed at CVD prevention. HDL possesses complex structural features including diverse protein components, lipids, size distribution, extensive glycosylation, and interacts with the gut microbiome, all of which influence HDL's anti-inflammatory, antioxidant, and cholesterol efflux properties. Elucidating the nuances of HDL structure and function at an individual level may unlock personalized dietary and lifestyle strategies to optimize HDL-mediated atheroprotection and reduce CVD risk. RECENT FINDINGS: Recent human studies have demonstrated that HDL particles are key players in the reduction of CVD risk. Our review highlights the role of HDL and the importance of personalized therapeutic approaches to improve their potential for reducing CVD risk. Factors such as diet, genetics, glycosylation, and gut microbiome interactions can modulate HDL structure and function at the individual level. We emphasize that fractionating HDL into size-based subclasses and measuring particle concentration are necessary to understand HDL biology and for developing the next generation of diagnostics and biomarkers. These discoveries underscore the need to move beyond a one-size-fits-all approach to HDL management. Precision nutrition strategies that account for personalized metabolic, genetic, and lifestyle data hold promise for optimizing HDL therapies and function to mitigate CVD risk more potently. While human studies show HDL play a key role in reducing CVD risk, recent findings indicate that factors such as diet, genetics, glycosylation, and gut microbes modulate HDL function at the individual level, underscoring the need for precision nutrition strategies that account for personalized variability to optimize HDL's potential for mitigating CVD risk.


Subject(s)
Cardiovascular Diseases , Lipoproteins, HDL , Humans , Lipoproteins, HDL/metabolism , Cardiovascular Diseases/prevention & control , Biomarkers , Nutritional Status , Risk Reduction Behavior
8.
Front Cardiovasc Med ; 10: 1251122, 2023.
Article in English | MEDLINE | ID: mdl-37745091

ABSTRACT

Background: Prolonged fasting, characterized by restricting caloric intake for 24 h or more, has garnered attention as a nutritional approach to improve lifespan and support healthy aging. Previous research from our group showed that a single bout of 36-h water-only fasting in humans resulted in a distinct metabolomic signature in plasma and increased levels of bioactive metabolites, which improved macrophage function and lifespan in C. elegans. Objective: This secondary outcome analysis aimed to investigate changes in the plasma lipidome associated with prolonged fasting and explore any potential links with markers of cardiometabolic health and aging. Method: We conducted a controlled pilot study with 20 male and female participants (mean age, 27.5 ± 4.4 years; mean BMI, 24.3 ± 3.1 kg/m2) in four metabolic states: (1) overnight fasted (baseline), (2) 2-h postprandial fed state (fed), (3) 36-h fasted state (fasted), and (4) 2-h postprandial refed state 12 h after the 36-h fast (refed). Plasma lipidomic profiles were analyzed using liquid chromatography and electrospray ionization mass spectrometry. Results: Several lipid classes, including lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), phosphatidylethanolamine, and triacylglycerol were significantly reduced in the 36-h fasted state, while free fatty acids, ceramides, and sphingomyelin were significantly increased compared to overnight fast and fed states (P < 0.05). After correction for multiple testing, 245 out of 832 lipid species were significantly altered in the fasted state compared to baseline (P < 0.05). Random forest models revealed that several lipid species, such as LPE(18:1), LPC(18:2), and FFA(20:1) were important features in discriminating the fasted state from both the overnight fasted and postprandial state. Conclusion: Our findings indicate that prolonged fasting vastly remodels the plasma lipidome and markedly alters the concentrations of several lipid species, which may be sensitive biomarkers of prolonged fasting. These changes in lipid metabolism during prolonged fasting have important implications for the management of cardiometabolic health and healthy aging, and warrant further exploration and validation in larger cohorts and different population groups.

9.
Int J Mol Sci ; 24(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37445930

ABSTRACT

Cancer-associated cachexia (CAC) is a critical contributor to pancreatic ductal adenocarcinoma (PDAC) mortality. Thus, there is an urgent need for new strategies to mitigate PDAC-associated cachexia; and the exploration of dietary interventions is a critical component. We previously observed that a ketogenic diet (KD) combined with gemcitabine enhances overall survival in the autochthonous LSL-KrasG12D/+; LSL-Trp53 R172H/+; Pdx1-Cre (KPC) mouse model. In this study, we investigated the effect and cellular mechanisms of a KD in combination with gemcitabine on the maintenance of skeletal muscle mass in KPC mice. For this purpose, male and female pancreatic tumor-bearing KPC mice were allocated to a control diet (CD), a KD, a CD + gemcitabine (CG), or a KD + gemcitabine (KG) group. We observed that a KD or a KG-mitigated muscle strength declined over time and presented higher gastrocnemius weights compared CD-fed mice. Mechanistically, we observed sex-dependent effects of KG treatment, including the inhibition of autophagy, and increased phosphorylation levels of eIF2α in KG-treated KPC mice when compared to CG-treated mice. Our data suggest that a KG results in preservation of skeletal muscle mass. Additional research is warranted to explore whether this diet-treatment combination can be clinically effective in combating CAC in PDAC patients.


Subject(s)
Carcinoma, Pancreatic Ductal , Diet, Ketogenic , Pancreatic Neoplasms , Mice , Male , Female , Animals , Gemcitabine , Cachexia/drug therapy , Cachexia/etiology , Pancreatic Neoplasms/complications , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology
10.
Int J Mol Sci ; 24(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37373543

ABSTRACT

Research has found that genes specific to microglia are among the strongest risk factors for Alzheimer's disease (AD) and that microglia are critically involved in the etiology of AD. Thus, microglia are an important therapeutic target for novel approaches to the treatment of AD. High-throughput in vitro models to screen molecules for their effectiveness in reversing the pathogenic, pro-inflammatory microglia phenotype are needed. In this study, we used a multi-stimulant approach to test the usefulness of the human microglia cell 3 (HMC3) cell line, immortalized from a human fetal brain-derived primary microglia culture, in duplicating critical aspects of the dysfunctional microglia phenotype. HMC3 microglia were treated with cholesterol (Chol), amyloid beta oligomers (AßO), lipopolysaccharide (LPS), and fructose individually and in combination. HMC3 microglia demonstrated changes in morphology consistent with activation when treated with the combination of Chol + AßO + fructose + LPS. Multiple treatments increased the cellular content of Chol and cholesteryl esters (CE), but only the combination treatment of Chol + AßO + fructose + LPS increased mitochondrial Chol content. Microglia treated with combinations containing Chol + AßO had lower apolipoprotein E (ApoE) secretion, with the combination of Chol + AßO + fructose + LPS having the strongest effect. Combination treatment with Chol + AßO + fructose + LPS also induced APOE and TNF-α expression, reduced ATP production, increased reactive oxygen species (ROS) concentration, and reduced phagocytosis events. These findings suggest that HMC3 microglia treated with the combination of Chol + AßO + fructose + LPS may be a useful high-throughput screening model amenable to testing on 96-well plates to test potential therapeutics to improve microglial function in the context of AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Adenosine Triphosphate/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/pharmacology , Apolipoproteins E/metabolism , Cell Line , Cholesterol/pharmacology , Fructose/pharmacology , Lipopolysaccharides/pharmacology , Microglia/metabolism , Reactive Oxygen Species/metabolism
11.
Nat Commun ; 14(1): 2045, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37041174

ABSTRACT

Lung mast cells are important in host defense, and excessive proliferation or activation of these cells can cause chronic inflammatory disorders like asthma. Two parallel pathways induced by KIT-stem cell factor (SCF) and FcεRI-immunoglobulin E interactions are critical for the proliferation and activation of mast cells, respectively. Here, we report that mast cell-expressed membrane protein1 (MCEMP1), a lung-specific surface protein, functions as an adaptor for KIT, which promotes SCF-mediated mast cell proliferation. MCEMP1 elicits intracellular signaling through its cytoplasmic immunoreceptor tyrosine-based activation motif and forms a complex with KIT to enhance its autophosphorylation and activation. Consequently, MCEMP1 deficiency impairs SCF-induced peritoneal mast cell proliferation in vitro and lung mast cell expansion in vivo. Mcemp1-deficient mice exhibit reduced airway inflammation and lung impairment in chronic asthma mouse models. This study shows lung-specific MCEMP1 as an adaptor for KIT to facilitate SCF-mediated mast cell proliferation.


Subject(s)
Asthma , Stem Cell Factor , Animals , Mice , Cell Proliferation , Lung/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Stem Cell Factor/metabolism
12.
Cancer Res Commun ; 2(9): 951-965, 2022 09.
Article in English | MEDLINE | ID: mdl-36382086

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) continues to be a major health problem. A ketogenic diet (KD), characterized by a very low carbohydrate and high fat composition, has gained attention for its anti-tumor potential. We evaluated the effect and mechanisms of feeding a strict KD alone or in combination with gemcitabine in the autochthonous LSL-KrasG12D/+; LSL-Trp53 R172H/+; Pdx1-Cre (KPC) mouse model. For this purpose, both male and female pancreatic tumor-bearing KPC mice were allocated to a control diet (CD; %kcal: 70% carb, 14% protein, 16% fat), a KD (%kcal: 14% protein, 1% carb, 85% fat), a CD + gemcitabine (CG), or a KD + gemcitabine (KG) group. Mice fed a KD alone or in combination with gemcitabine showed significantly increased blood ß-hydroxybutyrate levels compared to mice fed a CD or CG. KPC mice fed a KG had a significant increase in overall median survival compared to KPC mice fed a CD (increased overall median survival by 42%). Interestingly, when the data was disaggregated by sex, the effect of a KG was significant in female KPC mice (60% increase in median overall survival), but not in male KPC mice (28% increase in median overall survival). Mechanistically, the enhanced survival response to a KD combined with gemcitabine was multifactorial, including inhibition of ERK and AKT pathways, regulation of fatty acid metabolism and the modulation of the gut microbiota. In summary, a KD in combination with gemcitabine appears beneficial as a treatment strategy in PDAC in KPC mice, deserving further clinical evaluation.


Subject(s)
Carcinoma, Pancreatic Ductal , Diet, Ketogenic , Pancreatic Neoplasms , Mice , Male , Female , Animals , Gemcitabine , Pancreatic Neoplasms/drug therapy , Carcinoma, Pancreatic Ductal/drug therapy , Pancreatic Neoplasms
13.
BMJ Open ; 12(8): e054282, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35926992

ABSTRACT

OBJECTIVE: To establish the prevalence of long-term and serious harms of medical cannabis for chronic pain. DESIGN: Systematic review and meta-analysis. DATA SOURCES: MEDLINE, EMBASE, PsycINFO and CENTRAL from inception to 1 April 2020. STUDY SELECTION: Non-randomised studies reporting on harms of medical cannabis or cannabinoids in adults or children living with chronic pain with ≥4 weeks of follow-up. DATA EXTRACTION AND SYNTHESIS: A parallel guideline panel provided input on the design and interpretation of the systematic review, including selection of adverse events for consideration. Two reviewers, working independently and in duplicate, screened the search results, extracted data and assessed risk of bias. We used random-effects models for all meta-analyses and the Grades of Recommendations, Assessment, Development and Evaluation approach to evaluate the certainty of evidence. RESULTS: We identified 39 eligible studies that enrolled 12 143 adult patients with chronic pain. Very low certainty evidence suggests that adverse events are common (prevalence: 26.0%; 95% CI 13.2% to 41.2%) among users of medical cannabis for chronic pain, particularly any psychiatric adverse events (prevalence: 13.5%; 95% CI 2.6% to 30.6%). Very low certainty evidence, however, indicates serious adverse events, adverse events leading to discontinuation, cognitive adverse events, accidents and injuries, and dependence and withdrawal syndrome are less common and each typically occur in fewer than 1 in 20 patients. We compared studies with <24 weeks and ≥24 weeks of cannabis use and found more adverse events reported among studies with longer follow-up (test for interaction p<0.01). Palmitoylethanolamide was usually associated with few to no adverse events. We found insufficient evidence addressing the harms of medical cannabis compared with other pain management options, such as opioids. CONCLUSIONS: There is very low certainty evidence that adverse events are common among people living with chronic pain who use medical cannabis or cannabinoids, but that few patients experience serious adverse events.


Subject(s)
Cannabinoids , Chronic Pain , Medical Marijuana , Adult , Analgesics, Opioid , Cannabinoids/adverse effects , Child , Chronic Pain/drug therapy , Humans , Medical Marijuana/adverse effects
14.
Biomedicines ; 10(7)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35884800

ABSTRACT

High-density lipoproteins (HDL) play a critical role in cholesterol homeostasis. Apolipoprotein E (APOE), particularly the E4 allele, is a significant risk factor for Alzheimer's disease but is also a key HDL-associated protein involved in lipid transport in both the periphery and central nervous systems. The objective was to determine the influence of the APOE genotype on HDL function and size in the context of Alzheimer's disease. HDL from 194 participants (non-demented controls, mild cognitive impairment, and Alzheimer's disease dementia) were isolated from the plasma. The HDL cholesterol efflux capacity (CEC), lecithin-cholesterol acyltransferase (LCAT) activity, and particle diameter were measured. Neuropsychological test scores, clinical dementia rating, and magnetic resonance imaging scores were used to determine if cognition is associated with HDL function and size. HDL CEC and LCAT activity were reduced in APOE3E4 carriers compared to APOE3E3 carriers, regardless of diagnosis. In APOE3E3 carriers, CEC and LCAT activity were lower in patients. In APOE3E4 patients, the average particle size was lower. HDL LCAT activity and particle size were positively correlated with the neuropsychological scores and negatively correlated with the clinical dementia rating. We provide evidence for the first time of APOE genotype-specific alterations in HDL particles in Alzheimer's disease and an association between HDL function, size, and cognitive function.

15.
Cancer Res Commun ; 2(12): 1668, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36970724

ABSTRACT

[This corrects the article DOI: 10.1158/2767-9764.CRC-22-0256.][This corrects the article DOI: 10.1158/2767-9764.CRC-22-0256.].

16.
ACS Omega ; 6(47): 32022-32031, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34870025

ABSTRACT

Prenatal plus postnatal small-quantity lipid-based nutrient supplements (SQ-LNS) improved child growth at 18 months in the International Lipid-Based Nutrient Supplements DYAD trial in Ghana. In this secondary outcome analysis, we determined whether SQ-LNS versus prenatal iron and folic acid (IFA) supplementation improves the cholesterol efflux capacity (CEC) of high-density lipoprotein (HDL) particles and alters their lipidomic, proteomic, or glycoproteomic composition in a subset of 80 children at 18 months of age. HDL CEC was higher among children in the SQ-LNS versus IFA group (20.9 ± 4.1 vs 19.4 ± 3.3%; one-tailed p = 0.038). There were no differences in HDL lipidomic or proteomic composition between groups. Twelve glycopeptides out of the 163 analyzed were significantly altered by SQ-LNS, but none of the group differences remained significant after correction for multiple testing. Exploratory analysis showed that 6 out of the 33 HDL-associated proteins monitored differed in glycopeptide enrichment between intervention groups, and 6 out of the 163 glycopeptides were correlated with CEC. We conclude that prenatal plus postnatal SQ-LNS may modify HDL protein glycoprofiles and improve the CEC of HDL particles in children, which may have implications for subsequent child health outcomes. This trial was registered at clinicaltrials.gov as NCT00970866.

17.
Nanomedicine (Lond) ; 16(25): 2291-2303, 2021 10.
Article in English | MEDLINE | ID: mdl-34579548

ABSTRACT

Aim: To investigate a novel strategy to target tumor-associated macrophages and reprogram them to an antitumor phenotype in pancreatic adenocarcinoma (PDAC). Methods: M2 peptides were conjugated to HA-PEG/HA-PEI polymer to form self-assembled nanoparticles with miR-125b. The efficacy of HA-PEI/PEG-M2peptide nanoparticles in pancreatic tumors from LSL-KrasG12D/+, LSL-Trp53R172H/+, Pdx1-Cre genetically engineered mice was evaluated. Results:In vitro M2 macrophage-specific delivery of targeted nanoformulations was demonstrated. Intraperitoneal administration of M2-targeted nanoparticles showed preferential accumulation in the pancreas of KPC-PDAC mice and an above fourfold increase in the M1-to-M2 macrophage ratio compared with transfection with scrambled miR. Conclusion: M2-targeted HA-PEI/PEG nanoparticles with miR-125b can transfect tumor-associated macrophages in pancreatic tissues and may have implications for PDAC immunotherapy.


Subject(s)
Adenocarcinoma , MicroRNAs , Nanoparticles , Pancreatic Neoplasms , Tumor-Associated Macrophages , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Animals , Hyaluronic Acid , Mice , MicroRNAs/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Transfection
18.
BMJ ; 374: n1034, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34497047

ABSTRACT

OBJECTIVE: To determine the benefits and harms of medical cannabis and cannabinoids for chronic pain. DESIGN: Systematic review and meta-analysis. DATA SOURCES: MEDLINE, EMBASE, AMED, PsycInfo, CENTRAL, CINAHL, PubMed, Web of Science, Cannabis-Med, Epistemonikos, and trial registries up to January 2021. STUDY SELECTION: Randomised clinical trials of medical cannabis or cannabinoids versus any non-cannabis control for chronic pain at ≥1 month follow-up. DATA EXTRACTION AND SYNTHESIS: Paired reviewers independently assessed risk of bias and extracted data. We performed random-effects models meta-analyses and used GRADE to assess the certainty of evidence. RESULTS: A total of 32 trials with 5174 adult patients were included, 29 of which compared medical cannabis or cannabinoids with placebo. Medical cannabis was administered orally (n=30) or topically (n=2). Clinical populations included chronic non-cancer pain (n=28) and cancer related pain (n=4). Length of follow-up ranged from 1 to 5.5 months. Compared with placebo, non-inhaled medical cannabis probably results in a small increase in the proportion of patients experiencing at least the minimally important difference (MID) of 1 cm (on a 10 cm visual analogue scale (VAS)) in pain relief (modelled risk difference (RD) of 10% (95% confidence interval 5% to 15%), based on a weighted mean difference (WMD) of -0.50 cm (95% CI -0.75 to -0.25 cm, moderate certainty)). Medical cannabis taken orally results in a very small improvement in physical functioning (4% modelled RD (0.1% to 8%) for achieving at least the MID of 10 points on the 100-point SF-36 physical functioning scale, WMD of 1.67 points (0.03 to 3.31, high certainty)), and a small improvement in sleep quality (6% modelled RD (2% to 9%) for achieving at least the MID of 1 cm on a 10 cm VAS, WMD of -0.35 cm (-0.55 to -0.14 cm, high certainty)). Medical cannabis taken orally does not improve emotional, role, or social functioning (high certainty). Moderate certainty evidence shows that medical cannabis taken orally probably results in a small increased risk of transient cognitive impairment (RD 2% (0.1% to 6%)), vomiting (RD 3% (0.4% to 6%)), drowsiness (RD 5% (2% to 8%)), impaired attention (RD 3% (1% to 8%)), and nausea (RD 5% (2% to 8%)), but not diarrhoea; while high certainty evidence shows greater increased risk of dizziness (RD 9% (5% to 14%)) for trials with <3 months follow-up versus RD 28% (18% to 43%) for trials with ≥3 months follow-up; interaction test P=0.003; moderate credibility of subgroup effect). CONCLUSIONS: Moderate to high certainty evidence shows that non-inhaled medical cannabis or cannabinoids results in a small to very small improvement in pain relief, physical functioning, and sleep quality among patients with chronic pain, along with several transient adverse side effects, compared with placebo. The accompanying BMJ Rapid Recommendation provides contextualised guidance based on this body of evidence. SYSTEMATIC REVIEW REGISTRATION: https://osf.io/3pwn2.


Subject(s)
Cancer Pain/drug therapy , Cannabinoids/adverse effects , Chronic Pain/drug therapy , Medical Marijuana/administration & dosage , Adult , Cannabinoids/administration & dosage , Female , Humans , Male , Medical Marijuana/adverse effects , Minimal Clinically Important Difference , Pain Measurement , Randomized Controlled Trials as Topic , Sleep/drug effects
19.
Sci Rep ; 11(1): 16086, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34373542

ABSTRACT

High-density lipoprotein (HDL) particles have multiple beneficial and cardioprotective roles, yet our understanding of their full structural and functional repertoire is limited due to challenges in separating HDL particles from contaminating plasma proteins and other lipid-carrying particles that overlap HDL in size and/or density. Here we describe a method for isolating HDL particles using a combination of sequential flotation density ultracentrifugation and fast protein liquid chromatography with a size exclusion column. Purity was visualized by polyacrylamide gel electrophoresis and verified by proteomics, while size and structural integrity were confirmed by transmission electron microscopy. This HDL isolation method can be used to isolate a high yield of purified HDL from a low starting plasma volume for functional analyses. This method also enables investigators to select their specific HDL fraction of interest: from the least inclusive but highest purity HDL fraction eluting in the middle of the HDL peak, to pooling all of the fractions to capture the breadth of HDL particles in the original plasma sample. We show that certain proteins such as lecithin cholesterol acyltransferase (LCAT), phospholipid transfer protein (PLTP), and clusterin (CLUS) are enriched in large HDL particles whereas proteins such as alpha-2HS-glycoprotein (A2HSG), alpha-1 antitrypsin (A1AT), and vitamin D binding protein (VDBP) are enriched or found exclusively in small HDL particles.


Subject(s)
Lipoproteins, HDL/blood , Lipoproteins, HDL/isolation & purification , Chromatography, Gel/methods , Chromatography, Liquid/methods , Electrophoresis, Polyacrylamide Gel/methods , Humans , Particle Size , Proteins/isolation & purification , Ultracentrifugation/methods
20.
Nat Nanotechnol ; 16(6): 617-629, 2021 06.
Article in English | MEDLINE | ID: mdl-34117462

ABSTRACT

The adsorption of biomolecules to the surface of engineered nanomaterials, known as corona formation, defines their biological identity by altering their surface properties and transforming the physical, chemical and biological characteristics of the particles. In the first decade since the term protein corona was coined, studies have focused primarily on biomedical applications and human toxicity. The relevance of the environmental dimensions of the protein corona is still emerging. Often referred to as the eco-corona, a biomolecular coating forms upon nanomaterials as they enter the environment and may include proteins, as well as a diverse array of other biomolecules such as metabolites from cellular activity and/or natural organic matter. Proteins remain central in studies of eco-coronas because of the ease of monitoring and structurally characterizing proteins, as well as their crucial role in receptor engagement and signalling. The proteins within the eco-corona are optimal targets to establish the biophysicochemical principles of corona formation and transformation, as well as downstream impacts on nanomaterial uptake, distribution and impacts on the environment. Moreover, proteins appear to impart a biological identity, leading to cellular or organismal recognition of nanomaterials, a unique characteristic compared with natural organic matter. We contrast insights into protein corona formation from clinical samples with those in environmentally relevant systems. Principles specific to the environment are also explored to gain insights into the dynamics of interaction with or replacement by other biomolecules, including changes during trophic transfer and ecotoxicity. With many challenges remaining, we also highlight key opportunities for method development and impactful systems on which to focus the next phase of eco-corona studies. By interrogating these environmental dimensions of the protein corona, we offer a perspective on how mechanistic insights into protein coronas in the environment can lead to more sustainable, environmentally safe nanomaterials, as well as enhancing the efficacy of nanomaterials used in remediation and in the agri-food sector.


Subject(s)
Environment , Nanostructures , Protein Corona , Animals , Biodiversity , Humic Substances , Nanostructures/chemistry , Protein Corona/chemistry , Protein Corona/metabolism , Research Design
SELECTION OF CITATIONS
SEARCH DETAIL
...