Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 31(4): 6572-6583, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38153573

ABSTRACT

This study was conducted to determine the soil organic carbon (SOC) stock change factor for green manure crops that was developed by the Intergovernmental Panel on Climate Change (IPCC) Tier 2 method and compare this with the net global warming potential (GWP) index that is used to evaluate the contribution of green manuring to global warming. Four treatments were barley (Hordeum vulgare L.; B), hairy vetch (Vicia villosa R.; HV), a barley/hairy vetch mixture (BHV) and a conventional treatment (C). The aboveground biomass of green manure crops was incorporated into the soil on 25 May 2018, 26 April 2019, 29 April 2020, 30 April 2021 and 2 May 2022. Maize (Zea mays L.) was transplanted as the subsequent crop after the incorporation of green manures. SOC stock decreased with green manures, even though carbon input with green manures, including B, HV and BHV, was greater than that with C. The mean value of the SOC stock change factor for green manure crops, including B, HV and BHV was 0.627 and was significantly lower than that of the C. However, the net GWP also decreased with the incorporation of green manure crops, and the mean value of the relative net GWP index across B, HV and BHV was 0.853. These conflicting results were caused by different estimation methods between annual SOC change (△SOC) and net GWP. The estimation of SOC stock change using △SOC suggested by the IPCC method may overestimate the contribution of green manure crops to global warming. The net GWP method with comprehensive input and output of carbon in the soil system could provide a better understanding of the carbon balance in soil systems. In the current study, the comparison of △SOC and net GWP was conducted for at one site of upland soil for 5 years. Therefore, further research on estimating the effect of green manure crops on net GWP in various types of soil for longer years should be conducted.


Subject(s)
Hordeum , Soil , Global Warming , Carbon , Manure , Crops, Agricultural , Zea mays , Agriculture/methods , Fertilizers/analysis
2.
Front Genet ; 14: 1256627, 2023.
Article in English | MEDLINE | ID: mdl-37795242

ABSTRACT

The flesh color of watermelon is an important trait that is determined by carotenoid composition and affects consumers' fruit desirability. Although a complete dominant control by C locus (Cllcyb) for canary yellow flesh (CY) over red flesh has been reported, red and CY colors frequently appear as a mixed pattern in the same flesh (incomplete canary yellow, ICY) in F1 and inbred lines carrying dominant C alleles. Therefore, we examined the genetic control of the mixed color pattern in ICY using whole-genome resequencing of three ICY (ICY group) and three CY inbred lines (CY group), as well as genetic linkage mapping of an F2 population. The segregation pattern in 135 F2 plants indicated that CY is controlled by a single locus (named C 2) dominant over ICY. The whole-genome resequencing of ICY and CY inbred lines revealed an ICY/CY-specific region of approximately 27.60-27.88 Mb on Chr. 2 that was polymorphic between the ICY and CY groups. Our genetic map, using nine cleaved amplified polymorphic sequence markers developed based on the single-nucleotide polymorphisms from the ICY/CY-specific region, confirmed that C 2 is located on Chr. 2 and cosegregated with the marker (M7) derived from a non-synonymous single-nucleotide polymorphism of the pentatricopeptide repeat (PPR) gene (ClPPR, Cla97C02G039880). Additionally, 27 watermelon inbred lines of ICY, CY, and red flesh were evaluated using previously reported Cllcyb (C locus)-based markers and our C 2 locus-linked ClPPR-based marker (M7). As a result, dominant alleles at the C 2 locus were required to produce CY, in addition to dominant alleles at the C locus, while a recessive homozygous genotype at the C locus gave the red flesh irrespective of the genotype at the C 2 locus. Using a ClPPR-based cleaved amplified polymorphic sequence developed in this study and Cllcyb-based markers, watermelon cultivars with CY, ICY, and red flesh could be successfully discerned, implying that the combined use of these markers will be efficient for marker-assisted selection of flesh color in watermelon breeding.

3.
J Hazard Mater ; 448: 130927, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36764253

ABSTRACT

This study aimed to evaluate the reducing effects of calcite and phosphogypsum on arsenate [As(V)] availability to plants and elucidate the mechanisms of As(V) immobilization. The concentration of available As(V) to plants in upland arable soils with 1% calcite and phosphogypsum decreased to 17.4% and 36.9%, respectively, compared to the control. As(V) phytoavailability depends on the soil pH and calcium materials. The process of stabilizing As(V) (F3; anion exchange) with phosphogypsum is faster and easier compared to that with calcite (F4; bind to carbonate), but it results in a less stable form. New Ca-As(V) minerals (Ca52(HAsO4)x(AsO4)∙yH2O, Ca5H2x(AsO4)∙yH2O, or Ca32(AsO4)∙10 H2O) were identified in X-ray diffraction (XRD) patterns with calcite treatment. Precipitation, the primary mechanism induced by calcite, was activated at a soil pH above 8.0. Based on the deconvolution of calcium and sulfur X-ray photoelectron spectroscopy spectra and the peak shift in the XRD pattern in phosphogypsum, the substitution in which SO42- is exchanged with HAsO42- is the primary mechanism for As(V) immobilization. Substitution induced by phosphogypsum is a suitable reaction in upland arable soils, the predominant form of As(V) in the soil, with a pH range of 5-7.

4.
Molecules ; 27(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36080264

ABSTRACT

Oxidative stress has been demonstrated to play a pivotal role in the pathological processes of many neurodegenerative diseases. In the present study, we demonstrated that Chrysanthemum boreale Makino extract (CBME) suppresses oxidative stress-induced neurotoxicity in human neuroblastoma SH-SY5Y cells and elucidated the underlying molecular mechanism. Our observations revealed that CBME effectively protected neuronal cells against H2O2-induced cell death by preventing caspase-3 activation, Bax upregulation, Bcl-2 downregulation, activation of three mitogen-activated protein kinases (MAPKs), cAMP response element-binding protein (CREB) and NF-κB phosphorylation, and iNOS induction. These results provide evidence that CBME has remarkable neuroprotective properties in SH-SY5Y cells against oxidative damage, suggesting that the complementary or even alternative role of CBME in preventing and treating neurodegenerative diseases is worth further studies.


Subject(s)
Chrysanthemum , Neuroblastoma , Neurodegenerative Diseases , Neuroprotective Agents , Apoptosis , Cell Line, Tumor , Cell Survival , Chrysanthemum/metabolism , Humans , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Neuroblastoma/pathology , Neuroprotective Agents/pharmacology , Oxidative Stress , Reactive Oxygen Species/metabolism
5.
Plants (Basel) ; 11(3)2022 Jan 30.
Article in English | MEDLINE | ID: mdl-35161364

ABSTRACT

Cytochrome P450 (CYP) catalyzes a wide variety of monooxygenation reactions in plant primary and secondary metabolisms. Land plants contain CYP703, belonging to the CYP71 clan, which catalyzes the biochemical pathway of fatty acid hydroxylation, especially in male reproductive tissues. Korean/Asian ginseng (Panax ginseng Meyer) has been regarded as one of important medicinal plant for a long time, however the molecular mechanism is less known on its development. In this study, we identified and characterized a CYP703A gene in P. ginseng (PgCYP703A4), regarding reproductive development. PgCYP703A4 shared a high-sequence identity (81-83%) with predicted amino acid as CYP703 in Dancus carota, Pistacia vera, and Camellia sinensis as well as 76% of amino acid sequence identity with reported CYP703 in Arabidopsis thaliana and 75% with Oryza sativa. Amino acid alignment and phylogenetic comparison of P. ginseng with higher plants and known A. thaliana members clearly distinguish the CYP703 members, each containing the AATDTS oxygen binding motif and PERH as a clade signature. The expression of PgCYP704B1 was only detected in P. ginseng flower buds, particularly in meiotic cells and the tapetum layer of developing anther, indicating the conserved role on male reproduction with At- and Os- CYP703. To acquire the clue of function, we transformed the PgCYP703A4 in A. thaliana. Independent overexpressing lines (PgCYP703A4ox) increased silique size and seed number, and altered the contents of fatty acids composition of cutin monomer in the siliques. Our results indicate that PgCYP703A4 is involved in fatty acid hydroxylation which affects cutin production and fruit size.

6.
Environ Pollut ; 288: 117724, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34256287

ABSTRACT

This study was conducted to determine the effect of different green manure treatments on net GWP and GHGI in upland soil. Barley (B), hairy vetch (HV), and a barley/hairy vetch mixture (BHV) were sown on an upland soil on November 4, 2017 and October 24, 2018. The aboveground biomass of these green manures was incorporated into soil on June 1, 2018 and May 8, 2019. In addition, a fallow treatment (F) was installed as the control. Maize was transplanted as the subsequent crop after incorporation of green manures. Green manuring significantly affected CO2 and N2O emission, but not CH4. Average cumulative soil respiration across years with HV and BHV were 37.0 Mg CO2 ha-1 yr-1 and 35.8 Mg CO2 ha-1 yr-1, respectively and significantly higher than those with under F and B (32.7 Mg CO2 ha-1 yr-1 and 33.0 Mg CO2 ha-1 yr-1, respectively). Cumulative N2O emissions across years with F and HV were 6.29 kg N2O ha-1 yr-1 and 5.44 kg N2O ha-1 yr-1, respectively and significantly higher than those with B and BHV (4.26 kg N2O ha-1 yr-1 and 4.42 kg N2O ha-1 yr-1, respectively). The net ecosystem carbon budget for HV (-0.5 Mg C ha-1 yr-1) was the greatest among the treatments (F; -1.61 Mg C ha-1 yr-1, B; -3.98 Mg C ha-1 yr-1, and BHV; -0.91 Mg C ha-1 yr-1) because of its high biomass yields and the yield of maize after incorporation of HV. There was no significant difference of GHGI among F, HV, and BHV. Incorporation of HV or BHV could reduce net CO2 emissions per unit of maize grain production as well as F.


Subject(s)
Greenhouse Gases , Agriculture , Ecosystem , Fertilizers/analysis , Global Warming , Manure , Methane/analysis , Nitrogen/analysis , Nitrous Oxide/analysis , Soil
7.
Environ Pollut ; 279: 116892, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33751943

ABSTRACT

The aims of this study were to determine type and application rate of composted animal manure to optimize sweet potato yield relative to N2O emissions from upland soils. To this end, the study was conducted on upland soils amended with different types and rates of composted animal manure and located at two geographically different regions of South Korea. Field trials were established at Miryang and Yesan in South Korea during the sweet potato (Ipomoea batatas) growing season over 2 years: 2017 (Year 1) and 2018 (Year 2). Three composted animal manures (chicken, cow, and pig) were applied at the rates of 0, 10, and 20 Mg ha-1 to upland soils in both locations. In both Years and locations, manure type did not affected significantly cumulative N2O emissions from soil during the sweet potato growing season or the belowground biomass of sweet potato. However, application rate of animal manures affected significantly the cumulative N2O emission, nitrogen (N) in soil, and belowground biomass of sweet potato. An increase in cumulative N2O emission with application rates of animal manures was related to total N and inorganic N concentration in soil. The belowground biomass yield of sweet potato but also the cumulative N2O emission increased with increasing application rate of composted animal manures up to 7.6 and 16.0 Mg ha-1 in Miryang and Yesan, respectively. To reduce N2O emission from arable soil while increasing crop yield, composted animal manures should be applied at less than application rate that produce the maximum belowground biomass of sweet potato.


Subject(s)
Ipomoea batatas , Nitrous Oxide , Agriculture , Animals , Fertilizers , Manure/analysis , Nitrogen , Nitrous Oxide/analysis , Republic of Korea , Soil , Swine
8.
Chemosphere ; 271: 129595, 2021 May.
Article in English | MEDLINE | ID: mdl-33460892

ABSTRACT

Nitrogen-doped magnetic mesoporous hollow carbon (NMMHC) was prepared to realize effective adsorption of phenol from wastewater. The chemical and physical properties of NMMHC were analyzed, and the effects of adsorption time, initial pH, and phenol concentration on the adsorption capacity of NMMHC were studied. Adsorption kinetics and isotherm models were used to explain the adsorption properties. The results showed that the specific surface area, type of nitrogen group, and nitrogen content of NMMHC are related to the carbonization temperature. Chemical interaction was demonstrated to be present in the process of adsorption, which was characterized as monolayer adsorption. In addition, the adsorption mechanism was studied by attenuated total internal reflectance Fourier transform infrared spectroscopy and analysis of non-covalent interactions. This study found that non-covalent interactions between NMMHC and phenol molecules are van der Waals interactions, and nitrogen-containing groups increase the phenol adsorption capacity by enhancing such interactions. The π-π interactions between the nitrogen groups and phenol molecules also enhanced the adsorption energy.


Subject(s)
Nitrogen , Water Pollutants, Chemical , Adsorption , Carbon , Kinetics , Magnetic Phenomena , Phenol , Phenols , Spectroscopy, Fourier Transform Infrared , Wastewater
9.
Sci Total Environ ; 762: 143132, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33121778

ABSTRACT

This study aimed to determine cadmium (Cd) accumulation in arable soil, changes in Cd extractability and relevant soil properties, and Cd uptake by rice plants after long-term (50 years) application of phosphate (P) fertilizer and compost. A long-term field experiment was performed with rice crops from 1967 to 2016. Treatments included nitrogen and potassium fertilization (NK), nitrogen, phosphate, and potassium fertilization (NPK), nitrogen, phosphate, and potassium fertilization with compost application (NPK + compost), and control. Total Cd concentration in soil amended with NPK and NPK + compost continuously increased from 110 µg kg-1 up to 232 µg kg-1 from 1976 to 2016 but remained unchanged in control soil and soil amended with only NK. Plant-available Cd concentration in soil increased with year for all treatments, likely as a result of relevant changes in soil chemical properties. Cd concentrations in rice harvested in 2017 treated with NPK or NPK + compost were 212 µg Cd kg-1 and 223 µg Cd kg-1, respectively. These values exceed the maximum permissible level (200 µg Cd kg-1) established by the Ministry of Food and Drug Safety of Korea.

10.
Chemosphere ; 206: 369-375, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29754061

ABSTRACT

Although a number of studies have examined cadmium (Cd) immobilization by phosphate (P) in soils, determining the exact mechanism of Cd immobilization in various conditions, including P chemical form, P rate, and inherent Cd concentrations in soil has not been examined. The objective of this study was to determine changes in Cd immobilization through adsorption and precipitation in different conditions. Arable soils were spiked with inorganic Cd to give a total Cd concentration of 10, 100, and 1000 mg Cd kg-1. K2HPO4 (DPP) and KH2PO4 (MPP) were selected and mixed with the pretreated arable soil at the rates of 0, 800, 1600 and 3200 mg P kg-1. In soils with 10 and 100 mg Cd kg-1, both P materials similarly increased negative charge of soil and decreased extractable Cd concentration. Using X-ray diffraction (XRD), a diffraction peak revealing the presence of Cd(H2PO4)2 was observed in soil with 1000 mg Cd kg-1 and 3200 mg P kg-1 soil. In addition, X-ray photoelectron spectroscopy (XPS) analysis and modeling for saturation index for Cd minerals proved that formation of CdCO3 and Cd3(PO4)2 occurred in soil having 1000 mg Cd kg-1 and addition of both DPP and MPP. Immobilization of Cd might be attributed to Cd adsorption in soil with relatively low Cd levels (<100 mg kg-1). Precipitation of Cd(H2PO4)2, CdCO3, and Cd-phosphate might be a dominant mechanism to immobilize Cd, besides Cd adsorption, in soil with relatively high Cd levels (1000 mg kg-1).


Subject(s)
Cadmium/chemistry , Phosphates/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Adsorption , Cadmium/analysis , Soil Pollutants/analysis
11.
Arch Environ Contam Toxicol ; 74(1): 114-120, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29167964

ABSTRACT

The exact mechanism of cadmium (Cd) immobilization by oyster shell (OS) has not been reported. The effect of OS on Cd immobilization and the exact mechanism should be known before applying remediation technology using OS to Cd contaminated soils. Therefore, the objective of this study was to elucidate the mechanism of Cd immobilization by OS. Three grams of OS (< 0.84 mm) was reacted with 30 mL of 0-3.56 mg Cd L-1 solution at 25 °C for 48 h. Cadmium adsorption increased with increasing initial concentration of Cd in solution. The X-ray diffraction patterns clearly demonstrated that precipitation of CdCO3 did not take place in suspensions of OS after reacting with up to 3.56 mol Cd L-1. Interestingly, we found formation of Ca0.67Cd0.33CO3 crystalline in suspension of OS after reacting with maximum initial Cd concentrations. Precipitation and chemisorption might contribute to Cd immobilization together. However, we feel confident that chemisorption is the major mechanism by which Cd immobilization occurs with OS. In conclusion, OS could be an effective bioadsorbent to immobilize Cd through formation of geochemically stable Cd mineral.


Subject(s)
Animal Shells/metabolism , Cadmium/pharmacokinetics , Environmental Pollutants/pharmacokinetics , Ostreidae/metabolism , Adsorption , Animals , Cadmium/analysis , Ostreidae/drug effects , Soil Pollutants/pharmacokinetics
12.
J Environ Manage ; 171: 113-120, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26861225

ABSTRACT

Dissolved organic carbon (DOC) through leaching into the soils is another mechanism of net C loss. It plays an important role in impacting the environment and impacted by soil and crop management practices. However, little is known about the impacts of landscape positions and nitrogen (N) fertilizer rates on DOC leaching in switchgrass (Panicum virgatum L.). This experimental design included three N fertilizer rates [0 (low); 56 (medium); 112 (high) kg N ha(-1)] and three landscape positions (shoulder, backslope and footslope). Daily average DOC contents at backslope were significantly lower than that at shoulder and footslope. The DOC contents from the plots that received medium N rate were also significantly lower than the plots that received low N rates. The interactions of landscape and N rates on DOC contents were different in every year from 2009 to 2014, however, no significant consistent trend of DOC contents was observed over time. Annual average DOC contents from the plots managed with low N rate were higher than those with high N rate. These contents at the footslope were higher than that at the shoulder position. Data show that there is a moderate positive relationship between the total average DOC contents and the total average switchgrass biomass yields. Overall, the DOC contents from leachate in the switchgrass land were significantly influenced by landscape positions and N rates. The N fertilization reduced DOC leaching contents in switchgrass field. The switchgrass could retain soil and environment sustainability to some extent. These findings will assist in understanding the mechanism of changes in DOC contents with various parameters in the natural environment and crop management systems. However, use of long-term data might help to better assess the effects of above factors on DOC leaching contents and loss in the switchgrass field in the future.


Subject(s)
Crops, Agricultural/growth & development , Fertilizers/analysis , Hydrocarbons/analysis , Nitrogen/analysis , Panicum/growth & development , Soil/chemistry , Biomass , Ecosystem , Seeds/chemistry , Solubility
13.
Bull Environ Contam Toxicol ; 95(5): 675-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26242802

ABSTRACT

The objectives of this study were to determine (1) the phosphorus (P) level required to induce cadmium (Cd) precipitation in a contaminated arable soil with low concentrations of Cd and (2) the primary mechanism of Cd immobilization at different P levels. Phosphorus was added at levels of 0 800, 1600, and 16,000 mg P kg(-1) to a soil containing 5.57 mg Cd kg(-1). The concentration of 1 M NH4OAc extractable Cd decreased significantly with P levels up to 1600 mg kg(-1) due to an increase in soil pH and negative charge of soil (p<0.001). A further decrease in 1 M NH4OAc extractable Cd concentration was noted when P was increased to 16,000 mg P kg(-1) and may have been the result of Cd precipitation. This study suggest that adding P at high levels may help in the formation of geochemically stable Cd minerals in soil containing low levels of this heavy metal.


Subject(s)
Cadmium/analysis , Phosphates/chemistry , Soil Pollutants/analysis , Soil/chemistry , Adsorption , Cadmium/chemistry , Chemical Precipitation , Hydrogen-Ion Concentration , Phosphates/analysis , Republic of Korea , Soil/standards , Soil Pollutants/chemistry , Solubility
14.
Bull Environ Contam Toxicol ; 93(1): 101-5, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24718500

ABSTRACT

The objective of this study was to determine soil pH conditions that allow cadmium (Cd) to precipitate as Cd minerals in phosphate (P) amended soil. Cadmium immobilization could be attributed primarily to Cd adsorption due to increase in pH and negative charge. Soil pH might not affect Cd precipitation as Cd3(PO4)2 by direct reaction of Cd and P in the studied soil, even when soil pH increased up to 9.0. However, Cd might precipitate as CdCO3 with increasing pH up to 9.0 in P untreated soil and up to 8.0 in P treated soil depending on CO2 level.


Subject(s)
Cadmium/chemistry , Phosphates/chemistry , Soil Pollutants/analysis , Soil/chemistry , Cadmium/analysis , Chemical Precipitation , Hydrogen-Ion Concentration
15.
Appl Biochem Biotechnol ; 173(4): 918-32, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24733532

ABSTRACT

The objectives of this study was to improve poly-γ-glutamic acid (γ-PGA) production by Bacillus subtilis D7 isolated from a Korean traditional fermented food and to assess its antioxidant activity for applications in the cosmetics and pharmaceutical industries. Strain D7 produced γ-PGA in the absence of L-glutamic acid, indicating L-glutamic acid-independent production. However, the addition of L-glutamic acid increased γ-PGA production. Several tricarboxylic acid cycle intermediates and amino acids could serve as the metabolic precursors for γ-PGA production, and the addition of pyruvic acid and D-glutamic acid to culture medium improved the yield of γ-PGA markedly. The maximum yield of γ-PGA obtained was 24.93 ± 0.64 g/l in improved medium, which was about 5.4-fold higher than the yield obtained in basal medium. γ-PGA was found to have 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (46.8 ± 1.5 %), hydroxyl radical scavenging activity (52.0 ± 1.8 %), 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonate (ABTS) radical scavenging activity (42.1 ± 1.8 %), nitric oxide scavenging activity (35.1 ± 1.3 %), reducing power (0.304 ± 0.008), and metal chelating activity (91.3 ± 3.5 %). These results indicate that γ-PGA has a potential use in the food, cosmetics, and biomedical industries for the development of novel products with radical scavenging activity. As far as we are aware, this is the first report to describe the antioxidant activityof γ-PGA produced by bacteria.


Subject(s)
Antioxidants/metabolism , Bacillus subtilis/isolation & purification , Bacillus subtilis/metabolism , Food Microbiology , Polyglutamic Acid/biosynthesis , Korea
16.
Saudi J Biol Sci ; 21(2): 153-8, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24600308

ABSTRACT

We investigated the functionality of poly-γ-glutamic acid (γ-PGA), which is produced by Bacillus subtilis D7, for its potential applications in medicine and cosmetics. The γ-PGA had angiotensin-converting enzyme (ACE) inhibition activity. ACE inhibition activity was dependent on the γ-PGA concentration; the highest ACE inhibition activity was observed at 1.25 mg/l of γ-PGA. IC50 (0.108 mg/ml) of the γ-PGA was lower than that of standard ACE inhibitory drug, N-[(S)-mercapto-2-methylpropionyl]-L-proline (0.247 mg/ml). The γ-PGA also had water-holding capacity and hygroscopicity. Furthermore, the γ-PGA inhibited growth of some pathogenic bacteria, including Listeria monocytogenes, Salmonella typhimurium, Staphylococcus aureus, Klebsiella pneumonia and Esherichia coli. The γ-PGA exhibited a good metal adsorption capacity; Cr (VI) adsorption capacity of γ-PGA increased with decreasing pH, and the maximal adsorption was observed at pH 2. Our results suggest that γ-PGA may be expected to be widely applied in cosmetics, biomedical and environmental industries with the feature of being less harmful to humans and the environment.

17.
Arch Environ Contam Toxicol ; 58(2): 268-74, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19633979

ABSTRACT

A study was conducted to compare the effects of phosphate (P) materials in reducing cadmium extractability. Seven P materials (commercial P fertilizers--fused phosphate (FP), 'fused and superphosphate' [FSP], and rock phosphate [RP]; P chemicals--Ca[H(2)PO(4)](2).H(2)O, [NH(4)](2)HPO(4), KH(2)PO(4), and K(2)HPO(4)) were selected for the test. The selected P source was mixed with Cd-contaminated soil at the rate of 0, 200, 400, 800, and 1,600 mg P kg(-1) under controlled moisture conditions at 70% of water holding capacity, then incubated for 8 weeks. FP, Ca(H(2)PO(4))(2) H(2)O, KH(2)PO(4), and K(2)HPO(4) significantly decreased NH(4)OAc-extractable Cd (plant-available form) concentrations with increasing application rates. Compared to other phosphate materials used, K(2)HPO(4) was found to be the most effective in reducing the plant-available Cd concentration in soil, mainly due to the negative charge increase caused by soil pH and phosphate adsorption. Contrary to the general information, FSP and (NH(4))(2)HPO(4) increased Cd extractability at low levels of P application (<400 mg kg(-1)), and thereafter Cd extractability decreased significantly with increasing application rate. RP scarcely had an effect on reducing Cd extractability. Ion activity products of CdHPO(4), Cd(OH)(2), and CdCO(3) analyzed by the MINTEQ program were significantly increased by K(2)HPO(4) addition, but the effect of Cd-P compound formation on reducing Cd extractability was negligible. Conclusively, the P-induced alleviation of Cd extractability can be attributed primarily to Cd immobilization due to the increase in soil pH and negative charge rather than Cd-P precipitation, and therefore, alkaline P materials such as K(2)HPO(4) are effective for immobilizing soil Cd.


Subject(s)
Cadmium/chemistry , Phosphates/chemistry , Soil Pollutants/chemistry , Cadmium/analysis , Diphosphates/chemistry , Fertilizers , Potassium Compounds/chemistry , Soil , Soil Pollutants/analysis
18.
Arch Environ Contam Toxicol ; 56(2): 190-200, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18704256

ABSTRACT

The heavy metal contamination in soils and cultivated corn plants affected by zinc smelting activities in the vicinity of a zinc smelting factory in Korea was studied. Soils and corn plants were sampled at the harvesting stage and analyzed for cadmium (Cd) and zinc (Zn) concentration, as well as Cd and Zn fraction and other chemical properties of soils. Cd and Zn were highly accumulated in the surface soils (0-20 cm), at levels higher than the Korean warning criteria (Cd, 1.5; Zn, 300 mg kg(-1)), with corresponding mean values of 1.7 and 407 mg kg(-1), respectively, but these metals decreased significantly with increasing soil depth and distance from the factory, implying that contaminants may come from the factory through aerosol dynamics (Hong et al., Kor J Environ Agr 26(3):204-209, 2007a; Environ Contam Toxicol 52:496-502, 2007b) and not from geological sources. The leaf part had higher Cd and Zn concentrations, with values of 9.5 and 1733 mg kg(-1), compared to the stem (1.6 and 547 mg kg(-1)) and grain (0.18 and 61 mg kg(-1)) parts, respectively. Cd and Zn were higher in the oxidizable fraction, at 38.5% and 46.9% of the total Cd (2.6 mg kg(-1)) and Zn (407 mg kg(-1)), but the exchangeable + acidic fraction of Cd and Zn as the bioavailable phases was low, 0.2 and 50 mg kg(-1), respectively. To study the reduction of plant Cd and Zn uptake by liming, radish (Raphanus sativa L.) was cultivated in one representative field among the sites investigated, and Ca(OH)(2) was applied at rates of 0, 2, 4, and 8 mg ha(-1). Plant Cd and Zn concentrations and NH(4)OAc extractable Cd and Zn concentrations of soil decreased significantly with increasing Ca(OH)(2) rate, since it markedly increases the cation exchange capacity of soil induced by increased pH. As a result, liming in this kind of soil could be an effective countermeasure in reducing the phytoextractability of Cd and Zn.


Subject(s)
Calcium Compounds/chemistry , Metallurgy , Metals, Heavy/analysis , Oxides/chemistry , Soil Pollutants/analysis , Soil/analysis , Zea mays/chemistry , Agriculture , Environmental Monitoring , Korea , Metallurgy/standards , Soil/standards , Zea mays/growth & development , Zinc
19.
Bioresour Technol ; 99(13): 5928-32, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18194862

ABSTRACT

Fly ash has a high content of plant available silicate which is strongly needed for rice cultivation in Korea. One concern for plants grown on soils amended with fly ash is boron (B) toxicity because most of the fresh fly ash contains considerable B. This study was conducted in paddy soil to determine B uptake by rice and characteristics of B accumulation in soil after fly ash application (0, 40, 80, and 120 Mg fly ash ha(-1)). In all fly ash treatments, B content in rice leaves and available B in soil at all growing stage were higher than those of control, but were not exceeded a toxicity levels. Boron occluded in amorphous Fe and Al oxides comprised ca. 20-39% of total B and was not affected by fly ash application. Most of the B was accumulated by fly ash application as a residual B which is plant-unavailable form, comprised >60% of the total B in soil. Thus, fly ash can be a good soil amendment for rice production without B toxicity.


Subject(s)
Boron/analysis , Carbon , Industrial Waste , Oryza/growth & development , Particulate Matter , Boron/isolation & purification , Coal Ash , Fertilizers , Hydrogen-Ion Concentration , Korea , Organic Chemicals/analysis , Soil , Soil Pollutants/analysis
20.
Chemosphere ; 70(11): 2009-15, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17977572

ABSTRACT

To reduce effectively cadmium (Cd) phytoextractability by phosphate fertilizer in Cd contaminated soil, fused and superphosphate (FSP) was applied at the rate of 0, 33.5 (recommendation level), 167.5, and 335 kg P ha(-1) for radish (Raphanus sativa L.). Unlike from what we expected, soil Cd extractability and Cd concentration in radish increased with increasing FSP application in the field. To determine the effect of FSP on Cd immobilization, FSP was mixed with the selected soil at the rate of 0, 200, 400, 800, and 1600 mg P kg(-1) and then incubated for 8 weeks. As observed in the field study, NH(4)OAc extractable Cd concentration increased slightly with FSP addition up to 400 mg P kg(-1) and thereafter dramatically decreased upon increasing its application rate. Soil pH and negative charge were decreased at low level of FSP application up to 400 mg P kg(-1), but thereafter continually increased with increasing application level. This could be indirect evidence that net soil negative charge was increased by the specific adsorption of phosphate at the high rate of FSP application over 400 mg P kg(-1). The labile Cd fraction (water soluble and exchangeable+acidic fraction) increased with increasing FSP application by 400 mg P kg(-1) and thereafter gradually decreased with corresponding increase in unlabile fraction (oxidizable and residual fraction). Based on these results, FSP might be applied with a very high rate over 800 mg P kg(-1) to decrease Cd extractability in the selected field. However, this level is equivalent to 1440 kg P ha(-1), which is about 43 times higher than the recommendation levels for radish production and resulted in a significant increase in water soluble P concentration creating a new environmental problem. Therefore, the feasibility of FSP to reduce Cd extractability in the field is very low.


Subject(s)
Cadmium/metabolism , Diphosphates/chemistry , Fertilizers , Raphanus/metabolism , Soil Pollutants/metabolism , Cadmium/chemistry , Plant Roots/metabolism , Plant Shoots/metabolism , Soil Pollutants/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...