Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Aging Cell ; : e14305, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39148148

ABSTRACT

Age-related hearing loss (AHL) is the most common sensory disorder amongst the older population. Inflammaging is a ≈chronic low-grade inflammation that worsens with age and is an early sign of AHL; however, the underlying mechanisms remain unclear. We used electrophysiological and genetic approaches to establish the importance of interleukin 6 (IL-6)-dependent inflammation in AHL. Elevated IL-6 in the cochlea enhanced Cav1.3 calcium channel function in the inner hair cell (IHC) synapse in mice with AHL. IL-6 upregulated the Cav1.3 channel via the Janus kinase-mitogen activated kinase pathway, causing neurotransmitter excitotoxicity and synapse impairment; IL-6 deficiency or the administration of a Cav1.3 channel blocker attenuated this age-related damage, and rescued hearing loss. Thus, IL-6-dependent inflammaging upregulated the Cav1.3 channel in IHCs, contributing to AHL. Our findings could help the comprehensive understanding of inflammaging's effects on AHL, aiding in early intervention to protect against hearing decline.

2.
Mol Ther ; 32(5): 1387-1406, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38414247

ABSTRACT

Cisplatin-induced hearing loss is a common side effect of cancer chemotherapy in clinics; however, the mechanism of cisplatin-induced ototoxicity is still not completely clarified. Cisplatin-induced ototoxicity is mainly associated with the production of reactive oxygen species, activation of apoptosis, and accumulation of intracellular lipid peroxidation, which also is involved in ferroptosis induction. In this study, the expression of TfR1, a ferroptosis biomarker, was upregulated in the outer hair cells of cisplatin-treated mice. Moreover, several key ferroptosis regulator genes were altered in cisplatin-damaged cochlear explants based on RNA sequencing, implying the induction of ferroptosis. Ferroptosis-related Gpx4 and Fsp1 knockout mice were established to investigate the specific mechanisms associated with ferroptosis in cochleae. Severe outer hair cell loss and progressive damage of synapses in inner hair cells were observed in Atoh1-Gpx4-/- mice. However, Fsp1-/- mice showed no significant hearing phenotype, demonstrating that Gpx4, but not Fsp1, may play an important role in the functional maintenance of HCs. Moreover, findings showed that FDA-approved luteolin could specifically inhibit ferroptosis and alleviate cisplatin-induced ototoxicity through decreased expression of transferrin and intracellular concentration of ferrous ions. This study indicated that ferroptosis inhibition through the reduction of intracellular ferrous ions might be a potential strategy to prevent cisplatin-induced hearing loss.


Subject(s)
Cisplatin , Ferroptosis , Hearing Loss , Mice, Inbred C57BL , Mice, Knockout , Phospholipid Hydroperoxide Glutathione Peroxidase , Animals , Cisplatin/adverse effects , Ferroptosis/drug effects , Ferroptosis/genetics , Mice , Hearing Loss/chemically induced , Hearing Loss/genetics , Hearing Loss/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Disease Models, Animal , Receptors, Transferrin/metabolism , Receptors, Transferrin/genetics , Reactive Oxygen Species/metabolism , Lipid Peroxidation/drug effects , Hair Cells, Auditory, Outer/metabolism , Hair Cells, Auditory, Outer/drug effects , Hair Cells, Auditory, Outer/pathology , Ototoxicity/etiology , Ototoxicity/metabolism , Antineoplastic Agents/adverse effects , Apoptosis/drug effects
3.
Aging (Albany NY) ; 16(3): 2090-2122, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38301040

ABSTRACT

Maelstrom (MAEL), a novel cancer/testis-associated gene, may facilitate the initiation and progression of human malignancies, warranting comprehensive investigations. Single-cell and tissue-bulk transcriptomic data demonstrated higher MAEL expression in testis (spermatogonia/spermatocyte), kidney (proximal tubular cell), and brain (neuron/astrocyte), and corresponding cancers, including testicular germ cell tumor, glioma, papillary renal cell carcinoma, and clear cell renal cell carcinoma (ccRCC). Of these cancers, only in ccRCC did MAEL expression exhibit associations with both recurrence-free survival and overall survival. High MAEL expression was associated with an anti-inflammatory tumor immune microenvironment and VEGFR/mTOR activation in ccRCC tissues and high sensitivities to VEGFR/PI3K-AKT-mTOR inhibitors in ccRCC cell lines. Consistent with these, low rather than high MAEL expression indicated remarkable progression-free survival benefits from immune checkpoint inhibitor (ICI)-based immunotherapies over VEGFR/mTOR inhibitors in two large phase III trials (JAVELIN Renal 101 and CheckMate-025). MAEL is a biologically and clinically significant determinant with potential for prognostication after nephrectomy and patient selection for VEGFR/mTOR inhibitors and immunotherapy-based treatments.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Male , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Immunotherapy , Kidney Neoplasms/therapy , Kidney Neoplasms/drug therapy , MTOR Inhibitors , Phosphatidylinositol 3-Kinases , Prognosis , Tumor Microenvironment
4.
Fundam Res ; 3(4): 557-569, 2023 Jul.
Article in English | MEDLINE | ID: mdl-38933554

ABSTRACT

Auditory hair cells (HCs) are the mechanosensory receptors of the cochlea, and HC loss or malfunction can result from genetic defects. Dock4, a member of the Dock180-related protein superfamily, is a guanine nucleotide exchange factor for Rac1, and previous reports have shown that Dock4 mutations are associated with autism spectrum disorder, myelodysplastic syndromes, and tumorigenesis. Here, we found that Dock4 is highly expressed in the cochlear HCs of mice. However, the role of Dock4 in the inner ear has not yet been investigated. Taking advantage of the piggyBac transposon system, Dock4 knockdown (KD) mice were established to explore the role of Dock4 in the cochlea. Compared to wild-type controls, Dock4 KD mice showed significant hearing impairment from postnatal day 60. Dock4 KD mice showed hair bundle deficits and increased oxidative stress, which eventually led to HC apoptosis, late-onset HC loss, and progressive hearing loss. Furthermore, molecular mechanism studies showed that Rac1/ß-catenin signaling was significantly downregulated in Dock4 KD cochleae and that this was the cause for the disorganized stereocilia and increased oxidative stress in HCs. Overall, our work demonstrates that the Dock4/Rac1/ß-catenin signaling pathway plays a critical role in the maintenance of auditory HCs and hearing function.

SELECTION OF CITATIONS
SEARCH DETAIL