Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Biotechnol J ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831638

ABSTRACT

The foundation of most food production systems underpinning global food security is the careful management of soil resources. Embedded in the concept of soil health is the impact of diverse soil-borne pests and pathogens, and phytoparasitic nematodes represent a particular challenge. Root-knot nematodes and cyst nematodes are severe threats to agriculture, accounting for annual yield losses of US$157 billion. The control of soil-borne phytoparasitic nematodes conventionally relies on the use of chemical nematicides, which can have adverse effects on the environment and human health due to their persistence in soil, plants, and water. Nematode-resistant plants offer a promising alternative, but genetic resistance is species-dependent, limited to a few crops, and breeding and deploying resistant cultivars often takes years. Novel approaches for the control of phytoparasitic nematodes are therefore required, those that specifically target these parasites in the ground whilst minimizing the impact on the environment, agricultural ecosystems, and human health. In addition to the development of next-generation, environmentally safer nematicides, promising biochemical strategies include the combination of RNA interference (RNAi) with nanomaterials that ensure the targeted delivery and controlled release of double-stranded RNA. Genome sequencing has identified more than 75 genes in root knot and cyst nematodes that have been targeted with RNAi so far. But despite encouraging results, the delivery of dsRNA to nematodes in the soil remains inefficient. In this review article, we describe the state-of-the-art RNAi approaches targeting phytoparasitic nematodes and consider the potential benefits of nanotechnology to improve dsRNA delivery.

2.
Front Plant Sci ; 14: 1220691, 2023.
Article in English | MEDLINE | ID: mdl-37546245

ABSTRACT

Introduction: Originally regarded as garnish greens, microgreens are increasingly valued for their nutritional profile, including their mineral content. Methods: A study was conducted under controlled environmental conditions utilizing a selection of seventeen microgreen species belonging to seven different botanical families to investigate the genetic variation of macro- and micro-minerals and nitrate (NO3 -) content. Plants were grown in a soilless system using a natural fiber mat as the substrate. After germination, microgreens were fertigated with a modified half-strength Hoagland solution prepared using deionized water and without adding microelements. At harvest (10 to 19 days after sowing, based on the species), yield components were measured and dry tissue samples were analyzed for the concentration of total nitrogen (N), NO3 -, P, K, Ca, Mg, S, Na, Fe, Zn, Mn, Cu, and B. Results and discussion: Genotypic variations were observed for all of the examined parameters. Nitrogen and K were the principal macronutrients accounting for 38.4% and 33.8% of the total macro-minerals concentration, respectively, followed in order by Ca, P, S, and Mg. Except for sunflower (Helianthus annuus L.), all the tested species accumulated high (1,000-2,500 mg kg-1 FW) or very high (>2,500 mg kg-1 FW) NO3 - levels. Eight of the studied species had a K concentration above 300 mg 100 g-1 FW and could be considered as a good dietary source of K. On the other hand, scallion (Allium fistulosum L.), red cabbage (Brassica oleracea L. var. capitata), amaranth (Amaranthus tricolor L.), and Genovese basil (Ocinum basilicum L.) microgreens were a good source of Ca. Among micro-minerals, the most abundant was Fe followed by Zn, Mn, B, and Cu. Sunflower, scallion, and shiso (Perilla frutescens (L.) Britton) were a good source of Cu. Moreover, sunflower was a good source of Zn, whereas none of the other species examined could be considered a good source of Fe and Zn, suggesting that supplementary fertilization may be required to biofortify microgreens with essential microminerals. In conclusion, the tested microgreens can be a good source of minerals showing a high potential to address different dietary needs; however, their yield potential and mineral profile are largely determined by the genotype.

3.
Foods ; 10(8)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34441505

ABSTRACT

The interactive effects of six maturity stages and refrigerated storage (chilling)/blanching (heating) treatments on the volatile profiles of ripe tomatoes were studied. A total of 42 volatiles were identified, of which 19 compounds had odor activity values equal to or greater than 1. Of those, "green" and "leafy" aroma volatiles were most abundant. Chilling and heating treatments both suppressed overall volatile production, with chilling having the greater impact, regardless of harvest maturity. However, fruit harvested at the turning stage had the least volatile suppression by chilling and heating treatments in comparison with fruit harvested earlier or later, mostly in the fatty acid- and phenylalanine-derived volatiles. Volatiles derived from amino acids were promoted by heat treatment for fruit harvested at all maturities, and those derived from carotenoid and phenylalanine pathways and harvested at advanced harvest maturities were stimulated by chilling treatment. Volatile production is generally believed to be improved by delayed harvest, with vine-ripe being optimum. However, opposite results were observed possibly because the later-harvested fruit had longer exposure to open-field weather stress. The best harvest maturity recommendation is the turning stage where fruit developed abundant volatiles and were least impacted by chilling and heating treatments.

4.
Annu Rev Phytopathol ; 58: 277-311, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32853099

ABSTRACT

The loss of methyl bromide as a soil fumigant and minimal advances in the development and registration of new chemical fumigants has resulted in a resurgence of interest in the application of organic amendments (OAs) for soilborne plant pathogen and plant-parasitic nematode management. Significant progress has been made in the characterization of OAs, application of strategies for their use, and elucidation of mechanisms by which they suppress soilborne pests. Nonetheless, their utility is limited by the variability of disease control, expense, and the logistics of introducing them into crop production systems. Recent advances in molecular techniques have led to significant progress in the elucidation of the role of bacteria and fungi and their metabolic products on disease suppression with the addition of OAs. Biosolarization and anaerobic soil disinfestation, developed to manipulate systems and favor beneficial microorganisms to maximize their impact on plant pathogens, are built on a strong historical research foundation in OAs and the physical, chemical, and biological characteristics of disease-suppressive soils. This review focuses on recent applications of OAs and their potential for the management of soilborne plant pathogens and plant-parasitic nematodes, with emphasis primarily on annual fruit and vegetable production systems.


Subject(s)
Nematoda , Animals , Crop Production , Fungi , Soil , Soil Microbiology
5.
J Nematol ; 48(4): 231-240, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28154429

ABSTRACT

Two years of field trials conducted in a Meloidogyne incognita-infested field evaluated grafting and Paladin Pic-21 (dimethyl disulfide:chloropicrin [DMDS:Pic] 79:21) for root-knot nematode and weed control in tomato and melon. Tomato rootstocks evaluated were; 'TX301', 'Multifort', and 'Aloha'. 'Florida 47' was the scion and the nongrafted control. A double crop of melon was planted into existing beds following tomato harvest. Melon rootstocks, C. metulifer and 'Tetsukabuto', were evaluated with nongrafted 'Athena' in year 1. In year 2, watermelon followed tomato with scion variety 'Tri-X Palomar' as the control and also grafted onto 'Emphasis' and 'Strongtosa' rootstocks. Four soil treatments were applied in fall both years under Canslit metalized film; Paladin Pic-21, methyl bromide:chloropicrin (MeBr:C33, 67:33), Midas (iodomethane:chloropicrin 50:50), and a herbicide-treated control. M. incognita J2 in soil were highest in herbicide control plots and nongrafted tomato. All soil treatments produced similar tomato growth, which was greater than the herbicide control. All treatments reduced M. incognita J2 in roots compared to the herbicide control. 'Multifort' rootstock produced the largest and healthiest roots; however, the number of M. incognita isolated from roots did not differ among the tomato rootstocks tested. Galling on tomato was highest in herbicide control plots and nongrafted plants. In melon, M. incognita J2 in soil did not differ among melon rootstocks, but numbers isolated from melon rootstocks increased in 'Tetsukabuto' compared with C. metuliferus. 'Tetsukabuto' were larger root systems than nongrafted 'Athena'. All fumigants provided protection for all melon rootstocks against galling by M. incognita compared to the herbicide control. Galling on C. metuliferus rootstock was less in all fumigant treatments compared with nongrafted 'Athena' and 'Tetsukabuto'. In watermelon, M. incognita in soil and roots did not differ among soil treatments or watermelon rootstocks, and yield was lower in both grafted rootstocks compared with the nongrafted control. All soil treatments increased average fruit weight of watermelon compared with the herbicide control, and provided effective weed control, keeping the most predominant weed, purple nutsedge (Cyperus rotundus L.), density at or below 1/m row. Grafting commercial scions onto M. incognita-resistant rootstocks has potential for nematode management combined with soil treatments or as a stand-alone component in crop production systems.

6.
Phytopathology ; 103(5): 409-18, 2013 May.
Article in English | MEDLINE | ID: mdl-23252970

ABSTRACT

ABSTRACT We determined that multiple and independent introductions of copper resistance genes have taken place for strains of Xanthomonas citri subsp. citri from Argentina and strains of X. alfalfae subsp. citrumelonis from Florida. This study compared the partial nucleotide sequences of principal copper resistance genes copL, copA, and copB from X. citri subsp. citri and X. alfalfae subsp. citrumelonis to strains of other Xanthomonas spp. resistant to copper that were isolated from 12 different countries or territories. The survey confirmed that the copLAB gene cluster is present in many species of Xanthomonas from different parts of the world. Alignment of partial nucleotide sequences of copper resistance genes among the copper-resistant (Cu(R)) strains of Xanthomonas detected homology of ≥92, ≥96, and ≥91% for copL, copA, and copB, respectively. Grouping of strains based on branching patterns of phylogenetic trees was similar for copL and copA but differed for copB. When the three genes were concatenated and analyzed using various phylogenetic methods, it appeared that the plasmid had been horizontally transferred and various populations were mutating based on selection pressure unique to geographic regions. Although high homology of the genes among the strains indicated that the copper resistance in xanthomonads has a common origin, the slight differences in nucleotide sequences within groups of strains indicated that Cu(R) genes have been independently exchanged among species of Xanthomonas throughout the world.


Subject(s)
Citrus/microbiology , Copper/pharmacology , Drug Resistance, Bacterial/genetics , Gene Transfer, Horizontal , Multigene Family , Xanthomonas/genetics , Argentina , Bacterial Proteins/genetics , Base Sequence , DNA Primers/genetics , Florida , Phylogeny , Plant Diseases/microbiology , Plasmids , Polymerase Chain Reaction , Sequence Analysis, DNA , Xanthomonas/drug effects , Xanthomonas/physiology
7.
Phytopathology ; 102(10): 924-36, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22957819

ABSTRACT

This is the first comprehensive study of a collection of Ralstonia solanacearum strains from the southeastern United States to be characterized based on biovar, pathogenicity, hypersensitive reaction on tobacco, and phylogenetic analyses of the egl sequence. Rigorous phylogenetic analysis of the commonly used egl gene produced robust phylogenies that differed significantly from a neighbor-joining tree differed from and previously published phylogenies for R. solanacearum strains. These robust trees placed phylotype IV within the phylotype I clade, which may suggest that phylogenies based solely on egl may be misleading. As a result of phylogenetic analyses in this study, we determined that U.S. strains from Georgia, North Carolina, South Carolina, and older Florida strains isolated from solanaceous crops all belong to phylotype II sequevar 7. However, many strains recently isolated in Florida from tomato and other crops were more diverse than the southeastern United States population. These unique Florida strains grouped with strains mostly originating from the Caribbean and Central America. One of the exotic strains, which in a previous study was determined to be established in northern Florida, was characterized more extensively. Upon using Musa-specific multiplex polymerase chain reaction, this strain produced a unique banding pattern, which has not previously been reported. Inoculation of this strain into Musa spp. did not result in wilt symptoms; however, the plants were stunted and root masses were significantly reduced. Furthermore, following root inoculation, the bacterium, unlike a typical Florida race 1 biovar 1 strain, was recovered from the roots and stems, indicating systemic movement. This is the first report of an R. solanacearum strain isolated in the United States that is deleterious to the growth of Musa plants.


Subject(s)
Ralstonia solanacearum/isolation & purification , Phylogeny , Polymerase Chain Reaction , Ralstonia solanacearum/genetics , Southeastern United States
8.
Bacteriophage ; 2(4): 208-214, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-23531902

ABSTRACT

The use of bacteriophages as an effective phage therapy strategy faces significant challenges for controlling plant diseases in the phyllosphere. A number of factors must be taken into account when considering phage therapy for bacterial plant pathogens. Given that effective mitigation requires high populations of phage be present in close proximity to the pathogen at critical times in the disease cycle, the single biggest impediment that affects the efficacy of bacteriophages is their inability to persist on plant surfaces over time due to environmental factors. Inactivation by UV light is the biggest factor reducing bacteriophage persistence on plant surfaces. Therefore, designing strategies that minimize this effect are critical. For instance, application timing can be altered: instead of morning or afternoon application, phages can be applied late in the day to minimize the adverse effects of UV and extend the time high populations of phage persist on leaf surfaces. Protective formulations have been identified which prolong phage viability on the leaf surface; however, UV inactivation continues to be the major limiting factor in developing more effective bacteriophage treatments for bacterial plant pathogens. Other strategies, which have been developed to potentially increase persistence of phages on leaf surfaces, rely on establishing non-pathogenic or attenuated bacterial strains in the phyllosphere that are sensitive to the phage(s) specific to the target bacterium. We have also learned that selecting the correct phages for disease control is critical. This requires careful monitoring of bacterial strains in the field to minimize development of bacterial strains with resistance to the deployed bacteriophages. We also have data that indicate that selecting the phages based on in vivo assays may also be important when developing use for field application. Although bacteriophages have potential in biological control for plant disease control, there are major obstacles, which must be considered.

9.
Plant Dis ; 92(12): 1674-1682, 2008 Dec.
Article in English | MEDLINE | ID: mdl-30764299

ABSTRACT

The discovery of exotic Ralstonia solanacearum biovar 1 strains on geranium in north Florida led to a concern that this strain may have become established. Therefore, we monitored irrigation ponds and potential alternative aquatic weeds from 2002 to 2005 for the presence of this strain. We report that this strain, possibly originating from the Caribbean, has become established in several ponds in Gadsden County, FL. Cladistic taxonomy was used to subclassify the bacterium at the species level into four groups or phylotypes based on multiplex polymerase chain reaction of the internal transcribed spacer (ITS) region. The bacterium was further divided into sequevars by sequencing the endoglucanase gene (egl). The strains were determined to belong to phylotype II/sequevar 4 NPB (nonpathogenic on banana) that was recently reported in Martinique. Partial sequencing of the egl followed by phylogenetic analysis placed the new Caribbean strains in a different clade than the typical Florida endemic strains. Pulsed-field gel electrophoresis (PFGE) revealed different haplotypes upon comparison of the collected pond strains and the Floridian strains. Based on PFGE polymorphism, egl sequencing, and phylogenetic analysis, the Caribbean strains were shown to be identical to the strain isolated from infected geranium plants. Experiments were undertaken to monitor R. solanacearum in irrigation ponds and associated weeds. R. solanacearum was detected in surface-disinfested common aquatic weeds growing in the irrigation ponds, including Hydrocotyle ranunculoides (dollar weed) and Polygonum pennsylvanicum (Pennsylvania smart weed). Both weeds were latently infected and showed no signs of wilt when collected. Two different Hydrocotyle spp. were artificially inoculated with R. solanacearum under greenhouse conditions and both developed symptoms 14 days post inoculation (dpi) and the bacterium was recovered from the tissues 42 dpi. There was a positive correlation between ambient temperature and R. solanacearum populations in irrigation water, as previously shown by other researchers.

SELECTION OF CITATIONS
SEARCH DETAIL
...