Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Food Chem ; 459: 140339, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38986206

ABSTRACT

A facile, fast and visible sensing platform for ascorbic acid (AA) detection has been developed based on self-assembled hydrangea-like europium metal-organic framework (HL-EuMOF). HL-EuMOF was synthesized through a simple one-step mixing process with Eu3+ and 1, 10-phenanthroline-2, 9-dicarboxylic acid at room temperature, which exhibited excellent properties including strong red fluorescence, long decay lifetime (548.623 µs) and good luminescent stability. Based on the specific redox reaction between Fe3+ and AA, the HL-EuMOF@Fe3+ was fabricated with "turn-off" response for AA, where the resulting Fe2+ displayed effective fluorescence quenching ability toward HL-EuMOF. The sensor demonstrated low detection limit (31.94 nM), rapid response time (30 s) and high selectivity. Integration of smartphone-assisted RGB analysis with HL-EuMOF@Fe3+ permitted convenient and visible quantitative determination of AA level. This approach also presented good detection performances in complex human serum and beverage samples, which could provide a valuable tool for AA detection in biomedical research and food industry.

2.
Talanta ; 278: 126445, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908139

ABSTRACT

A near-infrared fluorescent "turn on" probe DTMI featuring simple skeleton was constructed easily. It undergoes a structure transformation from an A-π-A to a D-π-A framework towards SO32-. Besides, DTMI is capable of distinctive sensing sulfite with a fast response and a significant Stokes shift as well as with high sensitivity, excellent selectivity, long-term stability of fluorescence signals, and good anti-interference ability. The detection limit (LOD) of DTMI for sulfite within the linear concentration range of 0.5-10 µM is 27.39 nM. More importantly, DTMI has been favorably utilized for detecting sulfite in food samples such as red wine and vermicelli. Based on its low biotoxicity, DTMI has been successfully applied in imaging experiments involving HeLa cells, onion inner epidermal cells, and zebrafish. Therefore, the results show that the presented probe possesses potential sensing activity towards sulfite in complex biological system and food samples.

3.
Molecules ; 29(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38893325

ABSTRACT

A novel metal-free synthesis of 3-substituted isocoumarins through a sequential O-acylation/Wittig reaction has been established. The readily accessible (2-carboxybenzyl)-triphenylphosphonium bromide and diverse chlorides produced various 1H-isochromen-1-one in the presence of triethylamine, employing sequential O-acylation and an intramolecular Wittig reaction of acid anhydride. Reactions using these facile conditions have exhibited high functional group tolerance and excellent yields (up to 90%). Moreover, the fluorescence properties of isocoumarin derivatives were evaluated at the theoretical and experimental levels to determine their potential application in fluorescent materials. These derivatives have good photoluminescence in THF with a large Stokes shift and an absolute fluorescence quantum yield of up to 14%.

4.
Yi Chuan ; 46(4): 319-332, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38632094

ABSTRACT

Granulopoiesis is a highly ordered and precisely regulated process in which hematopoietic-related transcription factors play crucial roles. These transcription factors form complex regulatory networks through interactions with their co-factors or with each other, and anomalies in these networks can lead to the onset of leukemia. While the structures and functions of dozens of transcription factors involved in this process have been extensively studied, research on the regulatory relationships between these factors remains relatively limited. PU.1 and cMYB participate in multiple stages of neutrophil development, and their abnormalities are often associated with hematologic disorders. However, the regulatory relationship between these factors in vivo and their mode of interaction remain unclear. In this study, zebrafish models with cMyb overexpression (cmybhyper) and Pu.1 deficiency (pu.1G242D/G242D) were utilized to systematically investigate the interaction between Pu.1 and cMyb during granulopoiesis through whole-mount in situ hybridization, qRT-PCR, fluorescence reporting systems, and rescue experiments. The results showed a significant increase in cmyb expression in neutrophils of the pu.1G242D/G242D mutant, while there was no apparent change in pu.1 expression in cmybhyper. Further experiments involving injection of morpholino (MO) to decrease cmyb expression in pu.1G242D/G242D mutants, followed by SB and BrdU staining to assess neutrophil quantity and proliferation, revealed that reducing cmyb expression could rescue the abnormal proliferation phenotype of neutrophils in the pu.1G242D/G242D mutant. These findings suggest that Pu.1 negatively regulates the expression of cMyb during neutrophil development. Finally, through the construction of multi-site mutation plasmids and a fluorescent reporter system, confirmed that Pu.1 directly binds to the +72 bp site in the cmyb promoter, exerting negative regulation on its expression. In conclusion, this study delineates that Pu.1 participates in neutrophil development by regulating cmyb expression. This provides new insights into the regulatory relationship between these two factors and their roles in diseases.


Subject(s)
Neutrophils , Proto-Oncogene Proteins c-myb , Trans-Activators , Zebrafish , Animals , Hematopoiesis , Neutrophils/metabolism , Promoter Regions, Genetic , Transcription Factors/genetics , Zebrafish/genetics , Proto-Oncogene Proteins c-myb/genetics , Proto-Oncogene Proteins c-myb/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism
5.
Nat Commun ; 15(1): 3123, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600179

ABSTRACT

Stretchable neuromorphic optoelectronics present tantalizing opportunities for intelligent vision applications that necessitate high spatial resolution and multimodal interaction. Existing neuromorphic devices are either stretchable but not reconcilable with multifunctionality, or discrete but with low-end neurological function and limited flexibility. Herein, we propose a defect-tunable viscoelastic perovskite film that is assembled into strain-insensitive quasi-continuous microsphere morphologies for intrinsically stretchable neuromorphic vision-adaptive transistors. The resulting device achieves trichromatic photoadaptation and a rapid adaptive speed (<150 s) beyond human eyes (3 ~ 30 min) even under 100% mechanical strain. When acted as an artificial synapse, the device can operate at an ultra-low energy consumption (15 aJ) (far below the human brain of 1 ~ 10 fJ) with a high paired-pulse facilitation index of 270% (one of the best figures of merit in stretchable synaptic phototransistors). Furthermore, adaptive optical imaging is achieved by the strain-insensitive perovskite films, accelerating the implementation of next-generation neuromorphic vision systems.

6.
Food Chem ; 451: 138767, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38663241

ABSTRACT

By collecting real samples throughout the entire production process and employing chemometrics, metabolomics, and modern separation omic techniques, it unveiled the patterns of pesticide transfer during solid-state fermentation. The results indicated that 12 types of pesticide residues were prevalent during baijiu production, with organochlorine and carbamate pesticides being the most abundant in raw materials. After fermentation, organochlorine pesticides and pyrethroid pesticides exhibited higher content, while carbamate pesticides dominated in the final product. The pathways for pesticide input and elimination were identified, and the intricate mechanisms underlying these changes were further elucidated. Additionally, key control points were defined to facilitate targeted monitoring. The results indicated that pesticide residue primarily originates from raw materials and Daqu, whereas both solid-state fermentation and distillation processes were effective in reducing pesticide residues. The study offers valuable guidance for establishing pesticide residue standards in the context of baijiu production.


Subject(s)
Fermentation , Metabolomics , Pesticide Residues , Pesticide Residues/metabolism , Pesticide Residues/chemistry , Pesticide Residues/analysis , Food Contamination/analysis , Chemometrics
7.
Haematologica ; 109(7): 2092-2110, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38385270

ABSTRACT

t(1;19)(q23;p13) is one of the most common translocation genes in childhood acute lymphoblastic leukemia (ALL) and is also present in acute myeloid leukemia (AML) and mixed-phenotype acute leukemia (MPAL). This translocation results in the formation of the oncogenic E2A-PBX1 fusion protein, which contains a trans-activating domain from E2A and a DNA-binding homologous domain from PBX1. Despite its clear oncogenic potential, the pathogenesis of E2A-PBX1 fusion protein is not fully understood (especially in leukemias other than ALL), and effective targeted clinical therapies have not been developed. To address this, we established a stable and heritable zebrafish line expressing human E2A-PBX1 (hE2A-PBX1) for high-throughput drug screening. Blood phenotype analysis showed that hE2A-PBX1 expression induced myeloid hyperplasia by increasing myeloid differentiation propensity of hematopoietic stem cells (HSPC) and myeloid proliferation in larvae, and progressed to AML in adults. Mechanistic studies revealed that hE2A-PBX1 activated the TNF/IL-17/MAPK signaling pathway in blood cells and induced myeloid hyperplasia by upregulating the expression of runx1. Interestingly, through high-throughput drug screening, three small molecules targeting the TNF/IL-17/MAPK signaling pathway were identified, including OUL35, KJ-Pyr-9, and CID44216842, which not only alleviated the hE2A-PBX1-induced myeloid hyperplasia in zebrafish but also inhibited the growth and oncogenicity of human pre-B ALL cells with E2A-PBX1. Overall, this study provides a novel hE2APBX1 transgenic zebrafish leukemia model and identifies potential targeted therapeutic drugs, which may offer new insights into the treatment of E2A-PBX1 leukemia.


Subject(s)
Oncogene Proteins, Fusion , Zebrafish , Animals , Humans , Animals, Genetically Modified , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Proliferation/drug effects , Homeodomain Proteins , Leukemia/genetics , Leukemia/metabolism , Leukemia/drug therapy , Leukemia/pathology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , MAP Kinase Signaling System/drug effects , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Tumor Necrosis Factor-alpha/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
8.
Angew Chem Int Ed Engl ; 63(9): e202317876, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38193266

ABSTRACT

Constructing uniform covalent organic framework (COF) film on substrates for electronic devices is highly desirable. Here, a simple and mild strategy is developed to prepare them by polymerization on a solid-liquid interface. The universality of the method is confirmed by the successful preparation of five COF films with different microstructures. These films have large lateral size, controllable thickness, and high crystalline quality. And COF patterns can also be directly achieved on substrates via hydrophilic and hydrophobic interface engineering, which is in favor of preparing device array. For application studies, the PyTTA-TPA (PyTTA: 4,4',4'',4'''-(1,3,6,8-Tetrakis(4-aminophenyl)pyrene and TPA: terephthalaldehyde) COF film has a high photoresponsivity of 59.79 µA W-1 at 420 nm for photoelectrochemical (PEC) detection. When employed as an active material for optoelectronic synaptic devices for the first attempt, it shows excellent light-stimulated synaptic plasticity properties such as short-term plasticity (STP), long-term plasticity (LTP), and the conversion of STP to LTP, which can be used to simulate biological synaptic functions.

9.
BMJ Open ; 13(12): e077596, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38149420

ABSTRACT

OBJECTIVES: To investigate the association between the neutrophil-to-lymphocyte ratio (NLR) and psoriasis. DESIGN: Cross-sectional study. SETTING: National Health and Nutrition Examination Survey 2011-2014. PARTICIPANTS: A subsample of 8387 individuals aged 18 years and older were screened for inclusion, of whom 238 reported a diagnosis of psoriasis. PRIMARY AND SECONDARY OUTCOME MEASURES: Psoriasis and the severity of psoriasis were defined according to participants' self-reports. Weighted logistic regression, subgroup and restricted cubic spline (RCS) analyses were conducted to estimate the potential relationship of the NLR with psoriasis. RESULTS: In the fully adjusted models, the fourth quartile of the NLR was significantly and positively associated with the presence of psoriasis using the first quartile as a reference (OR: 2.22, 95% CI: 1.27 to 3.87, p=0.01). Elevated NLR was associated with an increased odds of having more severe psoriasis for the highest quartile (vs the lowest quartile), with an OR of 2.43 (95% CI: 1.10 to 5.36, p=0.003). The association between the NLR and psoriasis differed across prespecified subgroups by age, sex, race, income and education. A non-linear correlation of the NLR with psoriasis was observed using univariable and multivariable RCS (all p for non-linearity <0.05). CONCLUSIONS: The NLR was non-linearly and positively correlated with the presence of psoriasis, and our findings suggest a significant association between the NLR and the severity of psoriasis. The potential role and value in the clinical diagnosis and prognostic assessment of the NLR in psoriasis calls for further longitudinal studies.


Subject(s)
Neutrophils , Psoriasis , Humans , Cross-Sectional Studies , Nutrition Surveys , Lymphocytes , Psoriasis/diagnosis
10.
J Am Chem Soc ; 145(49): 26900-26907, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38010167

ABSTRACT

The manipulation of topological architectures in two-dimensional (2D) covalent organic framework (COF) materials for different applications is promising but remains a great challenge. Here, we first report the topology-selective synthesis of two distinct varieties of 2DCOFs, imine-based HT-COFs and benzimidazole-fused BI-HT-COFs, by simply altering acid catalysts. To HT-COFs, a superlattice of 1D channel with a persistent triangular shape is formed via Schiff base reaction, while to BI-HT-COFs, a hexagonal lattice structure with a highly conjugated structure and imidazole linkages is constructed due to an imine-based cyclization reaction. The two COFs exhibited marked differences in their bandgap, chemical stability, molecular adsorption, and catalytic activity, which make them have different fields of application. This work not only diversifies the hexaaminotriphenylene-based 2DCOF topologies but also provides vivid examples of structure-property relationships, which would facilitate fundamental research and potential applications of 2DCOFs.

11.
Biosens Bioelectron ; 240: 115646, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37657311

ABSTRACT

LDs (Lipid droplets) are key organelles for lipid metabolism and storage, which are closely related to ferroptosis and fatty liver. Due to its small size and highly dynamic nature, developing high-fidelity fluorescent probes for imaging of LDs is crucial for observing the dynamic physiological processes of LDs and investigating LDs-associated diseases. Herein, we synthesized three dicyanoisophorone-based fluorescent probes (DCIMe, DCIJ, and DCIQ) with different electron-donating groups and studied their imaging performance for LDs. The results show that DCIQ is highly polarity sensitive and can perform high-fidelity imaging for LDs, with significantly better performance than DCIMe, DCIJ, and commercial LD probe BODIPY 493/503. Based on this, DCIQ was successfully applied to real-time observe the interplays between LDs and other organelles (mitochondria, lysosomes, and endoplasmic reticulum), and to image the dynamics of LDs with fast scanning mode (0.44 s/frame) and the generation of oleic acid-induced LDs with high-fidelity. Finally, DCIQ was used to study the changes of LDs in the ferroptosis process and nonalcoholic fatty liver disease tissues. Overall, this study provided a powerful tool for high-fidelity imaging of LDs in cells and tissues.


Subject(s)
Biosensing Techniques , Non-alcoholic Fatty Liver Disease , Humans , Lipid Droplets , Fluorescent Dyes , Mitochondria
12.
Anal Chem ; 95(34): 12948-12955, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37589130

ABSTRACT

With the widespread use of drugs, drug-induced acute kidney injury (AKI) has become an increasingly serious health concern worldwide. Currently, early diagnosis of drug-induced AKI remains challenging because of the lack of effective biomarkers and noninvasive imaging tools. SO2 plays important physiological roles in living systems and is an important antioxidant for maintaining redox homeostasis. However, the relationship between SO2 (in water as SO32-/HSO3-) and drug-induced AKI remains largely unknown. Herein, we report the highly sensitive near-infrared fluorescence probe DSMN, which for the first time reveals the relationship between SO2 and drug-induced AKI. The probe responds to SO32-/HSO3- selectively and rapidly (within seconds) and shows a significant turn-on fluorescence at 710 nm with a large Stokes shift (125 nm). With these properties, the probe was successfully applied to detect SO2 in living cells and mice. Importantly, the probe can selectively target the kidneys, allowing for the detection of changes in the SO2 concentration in the kidneys. Based on this, DSMN was successfully used to detect cisplatin-induced AKI and revealed an increase in the SO2 levels. The results indicate that SO2 is a new biomarker for AKI and that DSMN is a powerful tool for studying and diagnosing drug-induced AKI.


Subject(s)
Acute Kidney Injury , Cisplatin , Animals , Mice , Fluorescence , Kidney/diagnostic imaging , Acute Kidney Injury/chemically induced , Acute Kidney Injury/diagnostic imaging , Biomarkers
13.
Foods ; 12(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37628086

ABSTRACT

The storage process of Baijiu is an integral part of its production (the quality undergoes substantial changes during the aging process of Baijiu). As the storage time extends, the flavor compounds in Baijiu tend to undergo coordinated transformation, thereby enhancing the quality of Baijiu. Among them, long-chain fatty acid ethyl esters (LCFAEEs) were widely distributed in Baijiu and have been shown to have potential contributions to the quality of Baijiu. However, the current research on LCFAEEs in Baijiu predominantly focuses on the olfactory sensation aspect, while there is a lack of systematic investigation into their influence on taste and evaluation after drinking Baijiu during the aging process. In light of this, the present study investigates the distribution of LCFAEEs in Baijiu over different years. We have combined modern flavor sensory analysis with multivariate chemometrics to comprehensively and objectively explore the influence of LCFAEEs on Baijiu quality. The results demonstrate a significant positive correlation between the concentration of LCFAEEs and the fruity aroma (p < 0.05, r = 0.755) as well as the aged aroma (p < 0.05, r = 0.833) of Baijiu within a specific range; they can effectively reduce the off-flavors and spicy sensation of Baijiu. Furthermore, additional experiments utilizing a single variable suggest that LCFAEEs were crucial factors influencing the flavor of Baijiu, with Ethyl Palmitate (EP) being the most notable LCFAEE that merits further systematic investigation.

14.
J Sci Food Agric ; 103(15): 7434-7444, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37395138

ABSTRACT

BACKGROUND: Baijiu is a very complex system and its flavor substances are endogenous, influenced by raw materials, starter, production process, production region and other factors. The production region directly affects the composition of flavor substances and quality of baijiu. However, identification of baijiu region is challenging because the corresponding relationship between the production region and baijiu quality is not clear, and the identification of regionalmarkers is indeterminate. In this study, the differences in volatile components of sauce-aroma style baijiu from four representative regions were investigated. RESULTS: A total of 94 volatile compounds were identified in samples tested. Additionally, it was verified that 35 potential flavor substances had important contributions to the aroma of sauce-aroma style baijiu. Meanwhile, nine potential regionalmarkers were screened through multivariate analysis. Further, based on distribution of volatile compounds and the results of sensory evaluation combined with multivariate analysis, a molecular matrix and correlation network were established according to the results of addition experiments, which showed that six substances had a significant impact on the flavor of the tested samples. CONCLUSION: Six key flavor substances (ethyl octanoate, ethyl 2-methylpropanoate, propyl acetate, ethyl heptanoate, 2-nonanone and butyl hexanoate) were considered as important regionalmarkers to effectively identify the production region of sauce-aroma style baijiu. © 2023 Society of Chemical Industry.


Subject(s)
Food , Odorants , Odorants/analysis , Multivariate Analysis
15.
Food Chem ; 426: 136576, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37321116

ABSTRACT

The strong aroma type of Baijiu is popular with its balanced flavor. However, the flavor characteristics of strong aroma type of Baijiu in different regions have significant diversities. Among them, the key aroma compounds in northern strong aroma type of Baijiu and the factors affecting the aroma profile and flavor quality are still unclear. In this study, a total of 78 aroma compounds were identified by gas chromatography-olfactometry-mass spectrometry (GC-O-MS). The quantitative analysis was completed and ethyl hexanoate (1003.24-4506.04 mg/L) was the highest. Aroma profile was successfully simulated by reconstitution, and omission test was applied to investigate the effects of the important aroma compounds on the aroma profile. Additionally, the relationship between expression of aroma compounds and sensory characteristics of samples was illustrated by flavor matrix. The overall aroma profile of northern strong aroma type of Baijiu was formed by the key aroma compounds with different aroma expression.


Subject(s)
Odorants , Volatile Organic Compounds , Odorants/analysis , Olfactometry/methods , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry/methods
16.
ACS Nano ; 17(6): 5994-6001, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36882234

ABSTRACT

Photocorrosion of highly active photocatalysts is an urgent problem to be solved in the field of photocatalysis; however, searching for effective strategies for inhibiting photocorrosion of photocatalysts is still a grand challenge. Herein, we design and construct a class of Cu2O/2D PyTTA-TPA COFs (PyTTA: 1,3,6,8-Tetrakis(4-aminophenyl)pyrene, TPA: p-benzaldehyde) core/shell nanocubes to greatly boost the performance of photocatalytic hydrogen evolution and significantly inhibit the photocorrosion. The optimal Cu2O/PyTTA-TPA COFs core/shell nanocubes exhibit an excellent photocatalytic H2 evolution rate of 12.5 mmol h-1 g-1, which is ∼8.0-fold and ∼20.0-fold higher than those of PyTTA-TPA COFs and Cu2O nanocube, respectively, and also is the best in all the reported metal oxides catalytic materials. The mechanism studies demonstrate that the appropriate matching band gaps and tight integration of PyTTA-TPA COFs and Cu2O nanocubes can significantly facilitate the separation of photogenerated electron-hole pairs in the Cu2O/PyTTA-TPA COFs core/shell nanocube during the photocatalytic process, which ameliorates the photocatalytic H2 evolution activity. Most importantly, the 2D PyTTA-TPA COFs shell with outstanding intrinsic stability protects Cu2O nanocubes core from photocorrosion by showing no morphology and crystal structure change after 1000 times of photoexcitation.

17.
Anal Chem ; 95(13): 5687-5694, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36940187

ABSTRACT

Mitophagy is a vital cellular process playing vital roles in regulating cellular metabolism and mitochondrial quality control. Mitochondrial viscosity is a key microenvironmental index, closely associated with mitochondrial status. To monitor mitophagy and mitochondrial viscosity, three molecular rotors (Mito-1, Mito-2, and Mito-3) were developed. All probes contain a cationic quinolinium unit and a C12 chain so that they can tightly bind mitochondria and are not affected by the mitochondrial membrane potential. Optical studies showed that all probes are sensitive to viscosity changes with an off-on fluorescence response, and Mito-3 shows the best fluorescence enhancement. Bioimaging studies showed that all these probes can not only tightly locate and visualize mitochondria with near-infrared fluorescence but also effectively monitor the mitochondrial viscosity changes in cells. Moreover, Mito-3 was successfully applied to visualize the mitophagy process induced by starvation, and mitochondrial viscosity was found to show an increase during mitophagy. We expect Mito-3 to become a useful imaging tool for studying mitochondrial viscosity and mitophagy.


Subject(s)
Fluorescent Dyes , Mitophagy , Fluorescent Dyes/metabolism , Viscosity , Membrane Potential, Mitochondrial , Mitochondria/metabolism
18.
Foods ; 12(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36981194

ABSTRACT

Long-chain fatty acid ethyl ester (LCFAEEs) is colorless and has a weak wax and cream aroma. It can be used as an intermediate for the synthesis of emulsifiers, and stabilizers and be applied in the production of flavor essence. It is also an important trace component in Baijiu and is attributed to making a contribution to the quality of Baijiu, but its distribution in Baijiu has not been clear, and its influence mechanisms on Baijiu quality have not been systematically studied. Therefore, the distribution of LCFAEEs for Baijiu in different years (2014, 2015, 2018, and 2022), different grades (premium, excellent, and level 1; note: here Baijiu grade classification was based on Chinese standard (GB/T 10781) and enterprise classification standard), and different sun exposure times (0, 6, 12, 20, 30, and 50 days) was uncovered. Thus, in this study, the effect of LCFAEEs on the quality of Baijiu was comprehensively and objectively proven by combining modern flavor sensomics and multicomponent chemometrics. The results showed that with the increase in Baijiu storage time, the concentration of LCFAEEs increased significantly in Baijiu (4.38-196.95 mg/L, p < 0.05). The concentration of LCFAEEs in level 1 Baijiu was significantly higher than that in excellent and premium Baijiu (the concentration ranges of ET, EP, EO, E9, E912, and E91215 were: 0.27-2.31 mg/L, 0.75-47.41 mg/L, 0.93-1.80 mg/L, 0.98-12.87 mg/L, 1.01-27.08 mg/L, and 1.00-1.75 mg/L, respectively, p < 0.05). With the increase in sun exposure time, the concentration of LCFAEEs in the Baijiu first increased significantly and then decreased significantly (4.38-5.95 mg/L, p < 0.05). As the flavor sensomics showed, the concentrations of LCFAEEs in Baijiu bodies were significantly correlated with the Baijiu taste sense (inlet taste, aroma sensation in the mouth), as well as with the evaluation after drinking (maintaining taste) (p < 0.05, r > 0.7). Based on the above, LCFAEEs are critical factors for Baijiu flavor thus, it is essential to explore a suitable concentration of LCFAEEs in Baijiu to make Baijiu's quality more ideal.

19.
ACS Appl Mater Interfaces ; 15(13): 16991-16998, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36972375

ABSTRACT

Two-dimensional (2D) conjugated metal-organic framework (c-MOF) films bring a completely new opportunity in the fields of catalysis, energy, and sensors, but preparing large-area continuous 2D c-MOF films remains a tremendous challenge. Here, we report a universal recrystallization strategy to synthesize large-area continuous 2D c-MOF films, revealing that the recrystallization strategy can significantly improve the electrochemical sensor sensitivity. Applying the 2D Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) c-MOF film as the active layer, the electrochemical sensor for glucose detection shows a high sensitivity of 20600 µA mM-1 cm-2, which is the best compared with the active materials reported previously. Most importantly, the as-made Cu3(HHTP)2 c-MOF-based electrochemical sensor possesses excellent stability. Overall, this work brings a brand-new universal strategy to prepare large-area continuous 2D c-MOF films for electrochemical sensors.

20.
Anal Chem ; 95(5): 2671-2679, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36692199

ABSTRACT

Complex intracellular life processes are usually completed through the cooperation of multiple organelles. Real-time tracking of the interplays between multiple organelles with a single fluorescent probe (SFP) is very helpful to deepen our understanding of complex biological processes. So far, SFP for simultaneously differentiating and visualizing of more than two different organelles has not been reported. Herein, we report an SFP (named ICM) that can be used for simultaneously differentiating and visualizing three important organelles: mitochondria, lysosomes, and lipid droplets (LDs). The probe can simultaneously light up mitochondria/lysosomes (∼700 nm) and LDs (∼480 nm) at significantly different emission wavelengths with high fidelity, and mitochondria and lysosomes can be effectively distinguished by their different shapes and fluorescence intensities. With this smart probe, real-time and simultaneous tracking of the interplays of these three organelles was successfully achieved for the first time.


Subject(s)
Fluorescent Dyes , Lipid Droplets , Lipid Droplets/metabolism , Fluorescent Dyes/metabolism , Lysosomes/metabolism , Mitochondria , Microscopy, Fluorescence/methods
SELECTION OF CITATIONS
SEARCH DETAIL