Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
J Mov Disord ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38566308

ABSTRACT

Objective: The Scales for Outcomes in Parkinson's Disease-Cognition (SCOPA-Cog) was developed to screen for cognition in PD. In this study, we aimed to evaluate the validity and reliability of the Korean version of the SCOPA-cog. Methods: We recruited 129 PD patients from 31 clinics with movement disorders in South Korea. The original version of the SCOPA-cognition was translated into Korean using the translation-retranslation method. The test-rest method with an intraclass correlation coefficient (ICC) and Cronbach's alpha coefficient were used to assess reliability. The Spearman's Rank correlation analysis with Montreal Cognitive Assessment-Korean version (MOCA-K) and Korean Mini-Mental State Examination (K-MMSE) were used to assess concurrent validity. Results: The Cronbach's alpha coefficient was 0.797, and the ICC was 0.887. Spearman's rank correlation analysis showed a significant correlation with the K-MMSE and MOCA-K scores (r = 0.546 and r = 0.683, respectively). Conclusions: Our results demonstrate that K-SCOPA-Cog exhibits good reliability and validity.

2.
Heliyon ; 10(2): e24033, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38293434

ABSTRACT

Immune responses must be strictly regulated to prevent autoimmune and infectious diseases and to protect against infectious agents. As people age, their immunity wanes, leading to a decrease in lymphocyte production in bone marrow and thymus and a decline in the efficacy of mature lymphocytes in secondary lymphoid organs. This study explores the immune-boosting potential of Yookgong-dan (YGD) in enhancing the immune system by activating immune cells. In our in vitro experiments, cyclophosphamide (Cy) treatment led to a significant decrease in primary splenocyte viability. However, subsequent treatment with YGD significantly improved cell viability, with doses ranging between 1 and 25 µg/mL in Cy-treated splenocytes. Flow cytometry analysis demonstrated that the Cy group exhibited reduced positivity of CD3+ T cells and CD45+ leukocytes compared to the blank group. In contrast, treatment with YGD led to a notable, dose-responsive increase in these immune cell types. In our in vivo experiments, YGD was orally administered to Cy-induced immunosuppressed mice at 20 and 100 mg/kg doses for 10 days. The results indicated a dose-dependent elevation in immunoglobulin (Ig)G and IgM levels in the serum, emphasizing the immunostimulatory effect of YGD. Furthermore, the Cy-treated group showed decreased T cells, B (CD19+) cells, and leukocytes in the total splenocyte population. Yet, YGD treatment resulted in a dose-dependent reversal of this pattern, suggesting its ability to counter immunosuppression. Notably, YGD was found to effectively stimulate T (CD4+ and CD8+) lymphocyte subsets and natural killer cells, along with enhancing Th1/Th2 cytokines in immunosuppressed conditions. These outcomes correlated with the modulation of BCL-2 and BAX expression, which are critical for apoptosis. In conclusion, YGD has the potential to bolster immune functionality through the activation of immune cells, thereby enhancing the immune system's capacity to combat diseases and improve overall health and wellness.

3.
J Muscle Res Cell Motil ; 45(1): 1-10, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37845555

ABSTRACT

Glucocorticoids (GCs) are commonly used in the treatment of chronic inflammatory conditions. However, the administration of high doses and long-term use of GCs can induce muscle atrophy (MA) in patients, leading to a decline in quality of life and increased mortality. MA leads to protein degradation in skeletal muscle, resulting in a reduction of muscle mass. This process is triggered by GCs like dexamethasone (DEX), which induce the expression of E3 ubiquitin ligases, namely Atrogin-1 and muscle RING-finger protein-1 (MuRF1). In this study, we examined the anti-MA potential of Luffa cylindrica Roemer (LCR) on DEX-treated primary skeletal myotubes. Primary skeletal myotubes stimulated with LCR alone resulted in a significant upregulation of myotube development, characterized by an increase in both the number and diameter of myotubes. Contrastingly, combined treatment with LCR and DEX reduced the expression of Atrogin-1, while treatment with DEX alone induced the expression of MuRF1. Furthermore, LCR treatment successfully restored the number and diameter of myotubes that had been diminished by DEX treatment. These findings suggest that LCR holds potential for treating MA, as an accelerating effect on muscle development and anti-MA effects on primary skeletal muscle cells were observed.


Subject(s)
Luffa , Humans , Rats , Animals , Luffa/metabolism , Dexamethasone/adverse effects , Quality of Life , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/pharmacology , Muscle Fibers, Skeletal/metabolism , Muscular Atrophy/chemically induced , Muscular Atrophy/drug therapy , Muscular Atrophy/metabolism , Glucocorticoids/adverse effects , Glucocorticoids/metabolism , Muscle, Skeletal/metabolism
4.
Biomed Pharmacother ; 168: 115710, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37862963

ABSTRACT

Spinal cord injury (SCI) is a devastating event that often results in the inflammatory condition of glial scar tissue formation, impeding neural regeneration and recovery. Reducing the inflammatory response and inhibiting glial formation are promising strategies for improving SCI outcomes. Here, we introduce a new role for Shinbaro2 (Sh2), known for its anti-inflammatory and pain-reducing effects, in ameliorating glial scars formed in the damaged spinal cord and promoting axon growth after SCI. Sh2 was applied at various concentrations to cultivate primary spinal cord neurons. Concentrations of 1 and 2 mg/mL effectively enhanced cell viability and axonal outgrowth in spinal cord neurons subjected to hydrogen peroxide or laceration injury. Sh2 helped reduce neuroinflammation by increasing anti-inflammatory M2 macrophages (arginase 1) and decreasing inflammatory cells, ultimately reducing lesion size. In scar formation, Sh2 inhibited the expression of ß-catenin and nestin in reactive astrocytes in the injured spinal cord. Moreover, Sh2 suppressed the expression of chondroitin sulfate proteoglycans and SOX9, which are involved in scar formation. Furthermore, Sh2 promoted the sprouting of serotonergic axons and the growth of neurofibrillary tangles, enhancing motor function recovery in SCI. These findings highlight the potential of Sh2 as an SCI therapeutic intervention, offering hope for neural and functional restoration in individuals with this debilitating condition.


Subject(s)
Gliosis , Spinal Cord Injuries , Rats , Animals , Gliosis/pathology , Cicatrix/drug therapy , Recovery of Function/physiology , Spinal Cord Injuries/drug therapy , Axons , Spinal Cord/metabolism , Anti-Inflammatory Agents/pharmacology
5.
Cells ; 12(18)2023 09 15.
Article in English | MEDLINE | ID: mdl-37759506

ABSTRACT

Epidural administration is the leading therapeutic option for the management of pain associated with lumbar spinal stenosis (LSS), which is characterized by compression of the nerve root due to narrowing of the spinal canal. Corticosteroids are effective in alleviating LSS-related pain but can lead to complications with long-term use. Recent studies have focused on identifying promising medications administered epidurally to affected spinal regions. In this study, we aimed to investigate the effectiveness of harpagoside (HAS) as an epidural medication in rats with LSS. HAS at various concentrations was effective for neuroprotection against ferrous sulfate damage and consequent promotion of axonal outgrowth in primary spinal cord neurons. When two concentrations of HAS (100 and 200 µg/kg) were administered to the rat LSS model via the epidural space once a day for 4 weeks, the inflammatory responses around the silicone block used for LSS were substantially reduced. Consistently, pain-related factors were significantly suppressed by the epidural administration of HAS. The motor functions of rats with LSS significantly improved. These findings suggest that targeted delivery of HAS directly to the affected area via epidural injection holds promise as a potential treatment option for the recovery of patients with LSS.


Subject(s)
Spinal Stenosis , Humans , Animals , Rats , Spinal Stenosis/complications , Spinal Stenosis/drug therapy , Glycosides , Pain , Injections, Epidural
6.
Biomedicines ; 11(5)2023 May 08.
Article in English | MEDLINE | ID: mdl-37239061

ABSTRACT

Epidural injection is one of the most common nonsurgical treatment options for long-term pain relief in lumbar spinal stenosis. Recently, various nerve block injections have been used for pain management. Among them, nerve block through epidural injection is a safe and effective method for the clinical treatment of low back or lower extremity pain. Although the epidural injection method has a long history, the effectiveness of long-term epidural injections in disc diseases has not been scientifically proven. In particular, to verify the safety and efficacy of drugs in preclinical studies, the route and method of drug administration in terms of the clinical application method and duration of use must be established. However, there is no standardized method for long-term epidural injections in a rat model of stenosis to identify the precise efficacy and safety of epidural injections. Therefore, standardizing the epidural injection method is very important for evaluating the efficacy and safety of drugs used for back or lower extremity pain. We describe the first standardized long-term epidural injection method for evaluating the efficacy and safety of drugs according to their route of administration in rats with lumbar spinal stenosis.

7.
Front Neurol ; 14: 1044724, 2023.
Article in English | MEDLINE | ID: mdl-36970511

ABSTRACT

The current standard for the pharmacological management of lumbar disk herniation (LDH), involving non-steroidal anti-inflammatory drugs, muscle relaxants, and opioid analgesics, often carries a risk of adverse events. The search for alternative therapeutic options remains a vital objective, given the high prevalence of LDH and the critical impact on the quality of life. Shinbaro 2 is a clinically effective herbal acupuncture against inflammation and various musculoskeletal disorders. Therefore, we explored whether Shinbaro 2 exerts protective effects in an LDH rat model. The results showed that Shinbaro 2 suppressed pro-inflammatory cytokines, interleukin-1 beta, tumor necrosis factor-alpha, disk degeneration-related factors, matrix metalloproteinase-1,-3,-9, and ADAMTS-5 in LDH rats. Shinbaro 2 administration reinstated a behavioral activity to a normal level in the windmill test. The results indicated that Shinbaro 2 administration restored spinal cord morphology and functions in the LDH model. Therefore, Shinbaro 2 exerted a protective effect in LDH via actions on inflammatory responses and disk degeneration, indicating that future research is warranted to assess the action mechanisms further and validate its effects.

8.
Adv Healthc Mater ; 12(7): e2201720, 2023 03.
Article in English | MEDLINE | ID: mdl-36447307

ABSTRACT

Neural stem cells (NSC) have tremendous potential for therapeutic regeneration of diseased or traumatized neural tissues, including injured spinal cord. However, transplanted NSC suffer from low cell survival and uncontrolled differentiation, limiting in vivo efficacy. Here, this issue is tackled by delivery through silk-collagen protein hydrogels that are stiffness-matched, stress-relaxing, and shear-thinning. The mechanically-tuned hydrogels protect NSC reprogrammed from fibroblasts (iNSC) initially from injection shear-stress, and enhance long-term survival over 12 weeks. Hydrogel-iNSC treatment alleviates neural inflammation, with reduced inflammatory cells and lesions than NSC-only. The iNSC migrate from the hydrogel into surrounding tissues, secrete up-regulated neurotrophic factors, and differentiate into neural cell subtypes, forming synapses. More serotonergic axons are observed in the lesion cavity, and locomotor functions are improved in hydrogel-iNSC than in iNSC-only. This study highlights the ability of mechanically-tuned protein hydrogels to protect iNSC from the injection stress and severe inflammatory environment, allowing them to differentiate and function to recover the injured spinal cord.


Subject(s)
Neural Stem Cells , Spinal Cord Injuries , Rats , Animals , Spinal Cord Injuries/therapy , Spinal Cord Injuries/pathology , Hydrogels/pharmacology , Hydrogels/metabolism , Silk/metabolism , Spinal Cord/pathology , Collagen/metabolism , Recovery of Function
9.
Cells ; 11(22)2022 11 10.
Article in English | MEDLINE | ID: mdl-36428977

ABSTRACT

Intervertebral disc degeneration (IDD) is an age-dependent progressive spinal disease that causes chronic back or neck pain. Although aging has long been presented as the main risk factor, the exact cause is not fully known. DNA methylation is associated with chronic pain, suggesting that epigenetic modulation may ameliorate disc degeneration. We examined histological changes in the DNA methylation within the discs and their association with pain-related transient receptor potential vanilloid subtype 1 (TrpV1) expression in rats subjected to IDD. Epigenetic markers (5-hydroxymethylcytosine (5hmC), 5-methylcytosine (5Mc)), DNA methyltransferases (DNMTs), and Ten-eleven translocations (Tets) were analyzed using immunohistochemistry, real-time PCR, and DNA dot-blot following IDD. Results revealed high 5mC levels in the annulus fibrosus (AF) region within the disc after IDD and an association with TrpV1 expression. DNMT1 is mainly involved in 5mC conversion in degenerated discs. However, 5hmC levels did not differ between groups. A degenerated disc can lead to locomotor defects as assessed by ladder and tail suspension tests, no pain signals in the von Frey test, upregulated matrix metalloproteinase-3, and downregulated aggrecan levels within the disc. Thus, we found that the DNA methylation status in the AF region of the disc was mainly changed after IDD and associated with aberrant TrpV1 expression in degenerated discs.


Subject(s)
Annulus Fibrosus , Intervertebral Disc Degeneration , Intervertebral Disc , Rats , Animals , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc/pathology , DNA Methylation/genetics , Epigenesis, Genetic
10.
Biomed Pharmacother ; 156: 113776, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36244265

ABSTRACT

Lumbar spinal stenosis (LSS) is defined as spinal canal narrowing, resulting in the compression of the nerves traversing the lower back into the leg. Inflammation is the most common cause of LSS. Elevated iron stores are often associated with chronic inflammation resulting in nerve damage-induced pain. Macrophage polarization to either the M1 (inflammatory) or M2 (anti-inflammatory) type is essential for regulating host defenses and promoting tissue repair. However, the precise role of macrophage polarization in iron release or retention in LSS pathophysiology remains elusive. Melittin, a component of bee venom, modulates iron metabolism-related macrophage polarization and is beneficial in LSS. We treated primary peritoneal macrophages with melittin and assessed macrophage polarization by immunofluorescence staining. Melittin (100 and 250 µg/kg) effects on iron deposition-induced macrophage polarization were also evaluated using immunochemistry, real-time PCR, and flow cytometry in an LSS rat model. Locomotor function was assessed using the Basso-Beattie-Bresnahan (BBB) locomotor rating scale, ladder scoring, and von Frey test for up to 3 weeks. Melittin induced M2 polarization of iron-insulted primary macrophages in vitro and increased the proportion of M2 macrophages in the damaged spinal cord in vivo. Moreover, melittin attenuated iron overload-induced M1 polarization by regulating iron metabolism-related genes in rats with LSS. In conclusion, melittin improves locomotor recovery and stimulates axonal growth following LSS. Additionally, it promotes functional recovery in LSS rat models by regulating macrophage iron metabolism, thereby activating M2 macrophages, suggesting its potential application in LSS treatment.


Subject(s)
Spinal Cord Injuries , Spinal Stenosis , Rats , Animals , Melitten/pharmacology , Spinal Stenosis/metabolism , Macrophages , Inflammation/metabolism , Iron/metabolism , Homeostasis
11.
Oxid Med Cell Longev ; 2022: 3472443, 2022.
Article in English | MEDLINE | ID: mdl-36160714

ABSTRACT

Lumbar spinal stenosis (LSS) is a common degenerative spinal condition in older individuals that causes impaired walking and other disabilities due to severe lower back and leg pain. Ligamentum flavum hypertrophy is a major LSS cause that may result from oxidative stress caused by degenerative cascades, including imbalanced iron homeostasis that leads to excessive reactive oxygen species production. We investigated the effects of Harpagophytum procumbens (HP) on iron-induced oxidative stress associated with LSS pathophysiology. Primary spinal cord neuron cultures were incubated in FeSO4-containing medium, followed by addition of 50, 100, or 200 µg/mL HP. Cell viability was assessed by CCK-8 and live/dead cell assays and by propidium iodide-live imaging. In an in vivo rat model of LSS, HP were administered at 100, 200, and 400 mg/kg, and disease progression was monitored for up to 3 weeks. We investigated the in vitro and in vivo effects of HP on iron-induced neurotoxicity by immunochemistry, real-time PCR, and flow cytometry. HP exerted neuroprotective effects and enhanced neurite outgrowths of iron-injured rat primary spinal cord neurons in vitro. HP treatment significantly reduced necrotic cell death and improved cells' antioxidative capacity via the NRF2 signaling pathway in iron-treated neurons. At 1 week after HP administration in LSS rats, the inflammatory response and oxidative stress markers were substantially reduced through regulation of excess iron accumulation. Iron that accumulated in the spinal cord underneath the implanted silicone was also regulated by HP administration via NRF2 signaling pathway activation. HP-treated LSS rats showed gradually reduced mechanical allodynia and amelioration of impaired behavior for 3 weeks. We demonstrated that HP administration can maintain iron homeostasis within neurons via activation of NRF2 signaling and can consequently facilitate functional recovery by regulating iron-induced oxidative stress. This fundamentally new strategy holds promise for LSS treatment.


Subject(s)
Harpagophytum , Iron Overload , Neuroprotective Agents , Spinal Stenosis , Animals , Rats , Iron/pharmacology , Iron Overload/complications , Iron Overload/drug therapy , Neuroprotective Agents/pharmacology , NF-E2-Related Factor 2/pharmacology , Oxidative Stress , Propidium/pharmacology , Reactive Oxygen Species/pharmacology , Signal Transduction , Silicones/pharmacology , Sincalide/pharmacology , Spinal Stenosis/complications
12.
Antioxidants (Basel) ; 11(7)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35883879

ABSTRACT

Uwhangchungsimwon (UCW), a multi-component herbal product, has long been used to treat vascular diseases such as headache, dizziness, high blood pressure, and stroke. Though the prophylactic actions of UCW are well known, insufficient experimental evidence exists on its effectiveness against stroke. Here, we investigated the mechanism underlying the efficacy of UCW in oxygen glucose deprivation/re-oxygenation (OGD/R)-injury to the primary cortical neurons using an in vitro ischemia model. Neurons secrete vascular endothelial growth factor (VEGF), which acts as a neurotrophic factor in response to an ischemic injury. VEGF modulates neuroprotection and axonal outgrowth by activating the VEGF receptors and plays a critical role in vascular diseases. In this study, cortical neurons were pretreated with UCW (2, 10, and 50 µg/mL) for 48 h, incubated in oxygen-glucose-deprived conditions for 2 h, and further reoxygenated for 24 h. UCW effectively protected neurons from OGD/R-induced degeneration and cell death. Moreover, the role of UCW in sustaining protection against OGD/R injury is associated with activation of VEGF-VEGFR and insulin-like growth factor 1 receptor expression. Therefore, UCW is a potential herbal supplement for the prevention of hypoxic-ischemic neuronal injury as it may occur after stroke.

13.
J Tissue Eng ; 13: 20417314221086491, 2022.
Article in English | MEDLINE | ID: mdl-35340425

ABSTRACT

Spinal cord injury (SCI) leads to disruption of the blood-spinal cord barrier, hemorrhage, and tissue edema, which impair blood circulation and induce ischemia. Angiogenesis after SCI is an important step in the repair of damaged tissues, and the extent of angiogenesis strongly correlates with the neural regeneration. Various biomaterials have been developed to promote angiogenesis signaling pathways, and angiogenic self-assembling peptides are useful for producing diverse supramolecular structures with tunable functionality. RADA16 (Ac-RARADADARARADADA-NH2), which forms nanofiber networks under physiological conditions, is a self-assembling peptide that can provide mechanical support for tissue regeneration and reportedly has diverse roles in wound healing. In this study, we applied an injectable form of RADA16 with or without the neuropeptide substance P to the contused spinal cords of rats and examined angiogenesis within the damaged spinal cord and subsequent functional improvement. Histological and immunohistochemical analyses revealed that the inflammatory cell population in the lesion cavity was decreased, the vessel number and density around the damaged spinal cord were increased, and the levels of neurofilaments within the lesion cavity were increased in SCI rats that received RADA16 and RADA16 with substance P (rats in the RADA16/SP group). Moreover, real-time PCR analysis of damaged spinal cord tissues showed that IL-10 expression was increased and that locomotor function (as assessed by the Basso, Beattie, and Bresnahan (BBB) scale and the horizontal ladder test) was significantly improved in the RADA16/SP group compared to the control group. Our findings indicate that RADA16 modified with substance P effectively stimulates angiogenesis within the damaged spinal cord and is a candidate agent for promoting functional recovery post-SCI.

14.
Biology (Basel) ; 10(9)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34571710

ABSTRACT

Cervus elaphus sibericus (CES), commonly known as deer antler, has been used as a medicinal herb because of its various pharmacological activities, including its anti-infective, anti-arthritic, anti-allergic, and anti-oxidative properties. However, the precise mechanisms by which CES functions as a potent anti-oxidative agent remain unknown; particularly, the effects of CES on cortical neurons and its neurobiological mechanism have not been examined. We used primary cortical neurons from the embryonic rat cerebral cortex and hydrogen peroxide to induce oxidative stress and damage in neurons. After post-treatment of CES at three concentrations (10, 50, and 200 µg/mL), the influence of CES on the neurobiological mechanism was assessed by immunocytochemistry, flow cytometry, and real-time PCR. CES effectively prevented neuronal death caused by hydrogen peroxide-induced damage by regulating oxidative signaling. In addition, CES significantly induced the expression of brain-derived neurotrophic factor and neurotrophin nerve growth factor, as well as regeneration-associated genes. We also observed newly processing elongated axons after CES treatment under oxidative conditions. In addition, filopodia tips generally do not form a retraction bulb, called swollen endings. Thus, CES shows therapeutic potential for treating neurological diseases by stimulating neuron repair and regeneration.

15.
Toxins (Basel) ; 13(9)2021 08 28.
Article in English | MEDLINE | ID: mdl-34564607

ABSTRACT

Apamin is a minor component of bee venom and is a polypeptide with 18 amino acid residues. Although apamin is considered a neurotoxic compound that blocks the potassium channel, its neuroprotective effects on neurons have been recently reported. However, there is little information about the underlying mechanism and very little is known regarding the toxicological characterization of other compounds in bee venom. Here, cultured mature cortical neurons were treated with bee venom components, including apamin, phospholipase A2, and the main component, melittin. Melittin and phospholipase A2 from bee venom caused a neurotoxic effect in dose-dependent manner, but apamin did not induce neurotoxicity in mature cortical neurons in doses of up to 10 µg/mL. Next, 1 and 10 µg/mL of apamin were applied to cultivate mature cortical neurons. Apamin accelerated neurite outgrowth and axon regeneration after laceration injury. Furthermore, apamin induced the upregulation of brain-derived neurotrophic factor and neurotrophin nerve growth factor, as well as regeneration-associated gene expression in mature cortical neurons. Due to its neurotherapeutic effects, apamin may be a promising candidate for the treatment of a wide range of neurological diseases.


Subject(s)
Apamin/pharmacology , Bee Venoms/pharmacology , Cerebellar Diseases/drug therapy , Lacerations/drug therapy , Nerve Regeneration/drug effects , Neurons/drug effects , Neuroprotective Agents/pharmacology , Animals , Disease Models, Animal , Humans , Rats , Rats, Sprague-Dawley
16.
J Inflamm Res ; 14: 1759-1773, 2021.
Article in English | MEDLINE | ID: mdl-33981154

ABSTRACT

PURPOSE: Lycopus lucidus Turcz (LLT) is a potent traditional medicinal herb that exerts therapeutic effects, regulating inflammatory disorders. However, the precise mechanisms by which LLT plays a potent role as an anti-inflammatory agent are still unknown, and in particular, the effects of LLT on cortical neurons and related mechanisms of neuroinflammation have not been studied. The NLRP3 inflammasome pathway is one of the most well known as an important driver of inflammation. We therefore hypothesized that LLT, as an effective anti-inflammatory agent, might have neurotherapeutic potential by inhibiting the NLRP3 inflammasome pathway in cortical neurons. MATERIALS AND METHODS: Primary cortical neurons were isolated from the embryonic rat cerebral cortex, and H2O2 was used to stimulate neuron damage in vitro. After treatment with LLT at three concentrations (10, 25, and 50 µg/mL), the expression of iNOS, NLRP3, ASC, caspase-1, IL-1ß, IL-18, IL-6, and IL-10 was determined by immunocytochemistry, qPCR, and ELISA. Neuron apoptosis was also evaluated using Annexin V-FITC/PI double staining FACS analysis. Neural regeneration-related factors (BDNF, NGF, synaptophysin, NT3, AKT, and mTOR) were analyzed by immunocytochemistry and qPCR. RESULTS: LLT effectively protected cultured rat cortical neurons from H2O2-induced neuronal injury by significantly inhibiting NLRP3 inflammasome activation. In addition, it significantly reduced caspase-1 activation, which is induced by inflammasome formation and regulated the secretion of IL-1ß/IL-18. We demonstrated that LLT enhances axonal elongation and synaptic connectivity upon H2O2-induced neuronal injury in rat primary cortical neurons. CONCLUSION: It was first demonstrated in vitro that LLT suppresses NLRP3 inflammasome activation, attenuates inflammation and apoptosis, and consequently promotes neuroprotection and the stimulation of neuron repair, suggesting that it is a promising therapeutic for neurological diseases.

17.
PLoS One ; 16(5): e0251464, 2021.
Article in English | MEDLINE | ID: mdl-33984013

ABSTRACT

Lumbar spinal stenosis (LSS), one of the most commonly reported spinal disorders, can cause loss of sensation and dyskinesia. In currently used animal models of LSS, the spinal cord is covered entirely with a silicone sheet, or block-shaped silicone is inserted directly into the spinal canal after laminectomy. However, the effects of differences between these implant materials have not been studied. We assessed the degree of damage and locomotor function of an LSS model in Sprague-Dawley rats using silicone blocks of varying hardness (70, 80, and 90 kPa) implanted at the L4 level. In sham rats, the spinal cord remained intact; in LSS rats, the spinal cord was increasingly compressed by the mechanical pressure of the silicone blocks as hardness increased. Inflammatory cells were not evident in sham rats, but numerous inflammatory cells were observed around the implanted silicone block in LSS rats. CD68+ cell quantification revealed increases in the inflammatory response in a hardness-dependent manner in LSS rats. Compared with those in sham rats, proinflammatory cytokine levels were significantly elevated in a hardness-dependent manner, and locomotor function was significantly decreased, in LSS rats. Overall, this study showed that hardness could be used as an index to control the severity of nerve injury induced by silicone implants.


Subject(s)
Biocompatible Materials/therapeutic use , Silicones/therapeutic use , Spinal Stenosis/surgery , Animals , Biocompatible Materials/chemistry , Hardness , Laminectomy , Lumbar Vertebrae/pathology , Lumbar Vertebrae/surgery , Male , Prostheses and Implants , Rats, Sprague-Dawley , Silicones/chemistry , Spinal Cord/pathology , Spinal Cord/surgery , Spinal Stenosis/pathology
18.
Diagnostics (Basel) ; 11(5)2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33922090

ABSTRACT

Lumbar spinal stenosis (LSS) is a common neurodegenerative condition. However, how neurogenic claudication develops with severe leg pain has not yet been clearly elucidated. Moreover, cerebrospinal fluid (CSF) physiology at the lumbosacral level is poorly understood because of the difficulties involved in quantification and visualization. Recent studies have suggested that assessment of mitochondrial function in CSF provides an indirect way to assess neurological disorders and an important feature of disease progression. In this study, we assessed the relevance of endogenous extracellular mitochondria in the CSF of rats after LSS. Mitochondrial changes within the CSF were analyzed following LSS at 1 week using flow cytometry. An increase in cell size and number was observed in CSF with LSS, and reactive oxygen species (ROS) levels were also increased within the CSF at 1 week in the LSS group. Elevated mitochondrial ROS and functional changes in the CSF are hallmarks of LSS. The present study is the first to demonstrate that elevated mitochondrial ROS within the CSF is a new index for the early detection of LSS. Moreover, it may represent a potential novel treatment target for LSS.

19.
Antioxidants (Basel) ; 10(3)2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33802485

ABSTRACT

Inula britannica var. chinensis (IBC) has been used as a traditional medicinal herb to treat inflammatory diseases. Although its anti-inflammatory and anti-oxidative effects have been reported, whether IBC exerts neuroprotective effects and the related mechanisms in cortical neurons remain unknown. In this study, we investigated the effects of different concentrations of IBC extract (5, 10, and 20 µg/mL) on cortical neurons using a hydrogen peroxide (H2O2)-induced injury model. Our results demonstrate that IBC can effectively enhance neuronal viability under in vitro-modeled reaction oxygen species (ROS)-generating conditions by inhibiting mitochondrial ROS production and increasing adenosine triphosphate level in H2O2-treated neurons. Additionally, we confirmed that neuronal death was attenuated by improving the mitochondrial membrane potential status and regulating the expression of cytochrome c, a protein related to cell death. Furthermore, IBC increased the expression of brain-derived neurotrophic factor and nerve growth factor. Furthermore, IBC inhibited the loss and induced the production of synaptophysin, a major synaptic vesicle protein. This study is the first to demonstrate that IBC exerts its neuroprotective effect by reducing mitochondria-associated oxidative stress and improving mitochondrial dysfunction.

20.
Cells ; 10(1)2021 01 12.
Article in English | MEDLINE | ID: mdl-33445717

ABSTRACT

Exercise training is a traditional method to maximize remaining function in patients with spinal cord injury (SCI), but the exact mechanism by which exercise promotes recovery after SCI has not been identified; whether exercise truly has a beneficial effect on SCI also remains unclear. Previously, we showed that epigenetic changes in the brain motor cortex occur after SCI and that a treatment leading to epigenetic modulation effectively promotes functional recovery after SCI. We aimed to determine how exercise induces functional improvement in rats subjected to SCI and whether epigenetic changes are engaged in the effects of exercise. A spinal cord contusion model was established in rats, which were then subjected to treadmill exercise for 12 weeks. We found that the size of the lesion cavity and the number of macrophages were decreased more in the exercise group than in the control group after 12 weeks of injury. Immunofluorescence and DNA dot blot analysis revealed that levels of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in the brain motor cortex were increased after exercise. Accordingly, the expression of ten-eleven translocation (Tet) family members (Tet1, Tet2, and Tet3) in the brain motor cortex also elevated. However, no macrophage polarization was induced by exercise. Locomotor function, including Basso, Beattie, and Bresnahan (BBB) and ladder scores, also improved in the exercise group compared to the control group. We concluded that treadmill exercise facilitates functional recovery in rats with SCI, and mechanistically epigenetic changes in the brain motor cortex may contribute to exercise-induced improvements.


Subject(s)
DNA Methylation/genetics , Physical Conditioning, Animal , Spinal Cord Injuries/genetics , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Animals , Axons/pathology , Cell Polarity , Epigenesis, Genetic , Female , Hydroxylation , Inflammation/pathology , Macrophages/pathology , Motor Cortex/metabolism , Nerve Regeneration , Rats, Sprague-Dawley , Recovery of Function , Spinal Cord/pathology , Spinal Cord Injuries/complications , Urinary Bladder, Neurogenic/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...