Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
NPJ Vaccines ; 9(1): 70, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561339

ABSTRACT

Human cytomegalovirus (HCMV) is a leading infectious cause of birth defects and the most common opportunistic infection that causes life-threatening diseases post-transplantation; however, an effective vaccine remains elusive. V160 is a live-attenuated replication defective HCMV vaccine that showed a 42.4% efficacy against primary HCMV infection among seronegative women in a phase 2b clinical trial. Here, we integrated the multicolor flow cytometry, longitudinal T cell receptor (TCR) sequencing, and single-cell RNA/TCR sequencing approaches to characterize the magnitude, phenotype, and functional quality of human T cell responses to V160. We demonstrated that V160 de novo induces IE-1 and pp65 specific durable polyfunctional effector CD8 T cells that are comparable to those induced by natural HCMV infection. We identified a variety of V160-responsive T cell clones which exhibit distinctive "transient" and "durable" expansion kinetics, and revealed a transcriptional signature that marks durable CD8 T cells post-vaccination. Our study enhances the understanding of human T-cell immune responses to V160 vaccination.

2.
Cell Rep Med ; 4(11): 101296, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37992686

ABSTRACT

Epstein-Barr virus (EBV) is closely associated with cancer, multiple sclerosis, and post-acute coronavirus disease 2019 (COVID-19) sequelae. There are currently no approved therapeutics or vaccines against EBV. It is noteworthy that combining multiple EBV glycoproteins can elicit potent neutralizing antibodies (nAbs) against viral infection, suggesting possible synergistic effects. Here, we characterize three nAbs (anti-gp42 5E3, anti-gHgL 6H2, and anti-gHgL 10E4) targeting different glycoproteins of the gHgL-gp42 complex. Two antibody cocktails synergistically neutralize infection in B cells (5E3+6H2+10E4) and epithelial cells (6H2+10E4) in vitro. Moreover, 5E3 alone and the 5E3+6H2+10E4 cocktail confer potent in vivo protection against lethal EBV challenge in humanized mice. The cryo-EM structure of a heptatomic gHgL-gp42 immune complex reveals non-overlapping epitopes of 5E3, 6H2, and 10E4 on the gHgL-gp42 complex. Structural and functional analyses highlight different neutralization mechanisms for each of the three nAbs. In summary, our results provide insight for the rational design of therapeutics or vaccines against EBV infection.


Subject(s)
Epstein-Barr Virus Infections , Vaccines , Animals , Mice , Viral Envelope Proteins/chemistry , Membrane Glycoproteins , Herpesvirus 4, Human , Viral Proteins , Combined Antibody Therapeutics , Epitopes , Glycoproteins , Antibodies, Neutralizing/therapeutic use
4.
J Exp Clin Cancer Res ; 42(1): 284, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891570

ABSTRACT

BACKGROUND: Oncolytic viruses are now well recognized as potential immunotherapeutic agents against cancer. However, the first FDA-approved oncolytic herpes simplex virus 1 (HSV-1), T-VEC, showed limited benefits in some patients in clinical trials. Thus, the identification of novel oncolytic viruses that can strengthen oncolytic virus therapy is warranted. Here, we identified a live-attenuated swine pseudorabies virus (PRV-LAV) as a promising oncolytic agent with broad-spectrum antitumor activity in vitro and in vivo. METHODS: PRV cytotoxicity against tumor cells and normal cells was tested in vitro using a CCK8 cell viability assay. A cell kinase inhibitor library was used to screen for key targets that affect the proliferation of PRV-LAV. The potential therapeutic efficacy of PRV-LAV was tested against syngeneic tumors in immunocompetent mice, and against subcutaneous xenografts of human cancer cell lines in nude mice. Cytometry by time of flight (CyTOF) and flow cytometry were used to uncover the immunological mechanism of PRV-LAV treatment in regulating the tumor immune microenvironment. RESULTS: Through various tumor-specific analyses, we show that PRV-LAV infects cancer cells via the NRP1/EGFR signaling pathway, which is commonly overexpressed in cancer. Further, we show that PRV-LAV kills cancer cells by inducing endoplasmic reticulum (ER) stress. Moreover, PRV-LAV is responsible for reprogramming the tumor microenvironment from immunologically naïve ("cold") to inflamed ("hot"), thereby increasing immune cell infiltration and restoring CD8+ T cell function against cancer. When delivered in combination with immune checkpoint inhibitors (ICIs), the anti-tumor response is augmented, suggestive of synergistic activity. CONCLUSIONS: PRV-LAV can infect cancer cells via NRP1/EGFR signaling and induce cancer cells apoptosis via ER stress. PRV-LAV treatment also restores CD8+ T cell function against cancer. The combination of PRV-LAV and immune checkpoint inhibitors has a significant synergistic effect. Overall, these findings point to PRV-LAV as a serious potential candidate for the treatment of NRP1/EGFR pathway-associated tumors.


Subject(s)
Herpesvirus 1, Suid , Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Animals , Swine , Mice , Vaccines, Attenuated , Mice, Nude , Immune Checkpoint Inhibitors , Oncolytic Viruses/genetics , ErbB Receptors , Tumor Microenvironment
5.
Emerg Microbes Infect ; 12(2): 2245920, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37542379

ABSTRACT

Epstein-Barr virus (EBV) is the first reported human oncogenic virus and infects more than 95% of the human population worldwide. EBV latent infection in B lymphocytes is essential for viral persistence. Glycoprotein gp42 is an indispensable member of the triggering complex for EBV entry into B cells. The C-type lectin domain (CTLD) of gp42 plays a key role in receptor binding and is the major target of neutralizing antibodies. Here, we isolated two rabbit antibodies, 1A7 and 6G7, targeting gp42 CTLD with potent neutralizing activity against B cell infection. Antibody 6G7 efficiently protects humanized mice from lethal EBV challenge and EBV-induced lymphoma. Neutralizing epitopes targeted by antibodies 1A7 and 6G7 are distinct and novel. Antibody 6G7 blocks gp42 binding to B cell surface and both 1A7 and 6G7 inhibit membrane fusion with B cells. Furthermore, 1A7- and 6G7-like antibodies in immunized sera are major contributors to B cell neutralization. This study demonstrates that anti-gp42 neutralizing antibodies are effective in inhibiting EBV infection and sheds light on the design of gp42-based vaccines and therapeutics.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 4, Human , Rabbits , Humans , Animals , Mice , Herpesvirus 4, Human/metabolism , Antibodies, Neutralizing , Membrane Glycoproteins/metabolism , Viral Proteins/metabolism , Epitopes
6.
BMC Complement Med Ther ; 23(1): 36, 2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36739385

ABSTRACT

Huangqin Su (HQS) tablet is mainly composed of baicalein which has been evaluated for its ability to inhibit influenza. The present study aimed to investigate the effect of HQS and oseltamivir phosphate (OS) (single or combination therapy) on influenza-induced acute pneumonia in male and female ICR mice. The regulatory effect of HQS on gut microbiota was also studied by using 16 s rDNA sequencing, and the targets and mechanisms of HQS against influenza were comprehensively analyzed by network pharmacology. Pharmacodynamic results, including lung index and pathological changes, showed that HQS exhibited significant anti-influenza efficacy and could improve the efficacy of low-dose OS (P < 0.05 and P < 0.01, respectively). The results of 16 s rDNA sequencing revealed that HQS modulated the gut microbiota and remarkably enriched the abundance of Lactobacillus. The findings of network pharmacology research suggested that the anti-influenza mechanism of HQS was related to TLRs, MAPK, and other signal transduction pathways. Taken together, this study identified the possibility of the combined use of HQS and OS and demonstrated the role of HQS in modulating the gut microbiota of mice against influenza. Network pharmacology studies also suggested that the anti-influenza effect of HQS was related to TLRs, MAPK, TNF, and other signaling pathways.


Subject(s)
Gastrointestinal Microbiome , Influenza, Human , Pneumonia , Animals , Female , Male , Mice , DNA, Ribosomal/pharmacology , Mice, Inbred ICR , Network Pharmacology , Oseltamivir/pharmacology , Scutellaria baicalensis
7.
ACS Nano ; 17(4): 3383-3393, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36630157

ABSTRACT

Plasmonic metasurfaces (PMs) functionalized with the monoclonal antibody (mAb) are promising biophotonic sensors for biomolecular interaction analysis and convenient immunoassay of various biomarkers, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Previous PM biosensing suffers from the slow affinity detection rate and lack of sufficient immunoassay studies on various SARS-CoV-2 variants. Here, we develop a high-efficiency affinity testing method based on label-free PM sensors with mAbs and demonstrate their binding characteristics to 12 spike receptor binding domain (RBD) variants of SARS-CoV-2. In addition to the research of plasmonic near-field influence on surface biomolecule sensing, we provide a comprehensive report about the Langmuir binding equilibrium of molecular kinetics between 12 SARS-CoV-2 RBD variants and mAb-functionalized PMs, which plays a crucial role in label-free immunosensing. A high-affinity mAb can be combined with the highly sensitive propagating plasmonic mode to boost the detection of SARS-CoV-2 variants. Owing to a better understanding of molecular dynamics on PMs, we develop an ultrasensitive biosensor of the SARS-CoV-2 Omicron variant. The experiments show great distinguishment of P < 0.0001 from respiratory diseases induced by other viruses, and the limit of detection is 2 orders smaller than the commercial colloidal gold immunoassay. Our study shows the label-free biosensing by low-cost wafer-scale PMs, which will provide essential information on biomolecular interaction and facilitate high-precision point-of-care testing for emerging SARS-CoV-2 variants in the future.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , Antibodies, Monoclonal , Immunoassay
8.
NPJ Vaccines ; 7(1): 159, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36494369

ABSTRACT

Epstein-Barr virus (EBV), a γ-herpesvirus, is the first identified oncogenic virus, which establishes permanent infection in humans. EBV causes infectious mononucleosis and is also tightly linked to many malignant diseases. Various vaccine formulations underwent testing in different animals or in humans. However, none of them was able to prevent EBV infection and no vaccine has been approved to date. Current efforts focus on antigen selection, combination, and design to improve the efficacy of vaccines. EBV glycoproteins such as gH/gL, gp42, and gB show excellent immunogenicity in preclinical studies compared to the previously favored gp350 antigen. Combinations of multiple EBV proteins in various vaccine designs become more attractive approaches considering the complex life cycle and complicated infection mechanisms of EBV. Besides, rationally designed vaccines such as virus-like particles (VLPs) and protein scaffold-based vaccines elicited more potent immune responses than soluble antigens. In addition, humanized mice, rabbits, as well as nonhuman primates that can be infected by EBV significantly aid vaccine development. Innovative vaccine design approaches, including polymer-based nanoparticles, the development of effective adjuvants, and antibody-guided vaccine design, will further enhance the immunogenicity of vaccine candidates. In this review, we will summarize (i) the disease burden caused by EBV and the necessity of developing an EBV vaccine; (ii) previous EBV vaccine studies and available animal models; (iii) future trends of EBV vaccines, including activation of cellular immune responses, novel immunogen design, heterologous prime-boost approach, induction of mucosal immunity, application of nanoparticle delivery system, and modern adjuvant development.

9.
Virol J ; 19(1): 196, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36424667

ABSTRACT

BACKGROUND: Epstein-Barr virus (EBV) is a wide-spread human herpesvirus that is highly associated with infectious mononucleosis and several malignancies. Evaluation of EBV neutralizing antibody titers is important for serological studies, vaccine development and monoclonal antibody screening. The traditional method based on antibody inhibition of EBV transformation of B cells is very time-consuming. A more practical flow cytometry-based (FCM) approach to evaluate neutralizing titers is not amenable to achieving high-throughput evaluation of large-scale samples. A high-throughput approach is urgently needed. RESULTS: Here, we present a rapid and high-throughput method based on high content imaging system (HCIS) analysis. EBV titers determined by the HCIS-based assay were similar to those obtained by the FCM-based assay. Neutralizing titers of sera and monoclonal antibodies measured by the HCIS-based assay strongly correlated with titers measured by the FCM-based assay. HCIS assays showed a strong correlation between B cell infection neutralizing titers and the anti-gp350 IgG titers in healthy EBV carriers and monkey sera. Finally, anti-gHgL IgG titers from sera of healthy EBV carriers significantly correlated with epithelial cell infection neutralizing titers. CONCLUSIONS: This HCIS-based assay is a high-throughput assay to determine viral titers and evaluate neutralizing potentials of sera and monoclonal antibodies. This HCIS-based assay will aid the development of vaccines and therapeutic monoclonal antibody against EBV.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 4, Human , Humans , Antibodies, Viral , Immunoglobulin G , Antibodies, Monoclonal
10.
Vaccine ; 40(47): 6839-6848, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36253220

ABSTRACT

The ongoing coronavirus disease-19 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has drastically changed our way of life and continues to have an unmitigated socioeconomic impact across the globe. Research into potential vaccine design and production is focused on the spike (S) protein of the virus, which is critical for virus entry into host cells. Yet, whether the degree of glycosylation in the S protein is associated with vaccine efficacy remains unclear. Here, we first optimized the expression of the S protein in mammalian cells. While we found no significant discrepancy in purity, homogeneity, or receptor binding ability among S proteins derived from 293F cells (referred to as 293F S-2P), 293S GnTI- cells (defective in N-acetylglucosaminyl transferase I enzyme; 293S S-2P), or TN-5B1-4 insect cells (Bac S-2P), there was significant variation in the glycosylation patterns and thermal stability of the proteins. Compared with the partially glycosylated 293S S-2P or Bac S-2P, the fully glycosylated 293F S-2P exhibited higher binding reactivity to convalescent sera. In addition, 293F S-2P induced higher IgG and neutralizing antibody titres than 293S or Bac S-2P in mice. Furthermore, a prime-boost-boost regimen, using a combined immunization of S-2P proteins with various degrees of glycosylation, elicited a more robust neutralizing antibody response than a single S-2P alone. Collectively, this study provides insight into ways to design a more effective SARS-CoV-2 immunogen.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Mice , Animals , SARS-CoV-2 , Glycosylation , COVID-19/prevention & control , Antibodies, Neutralizing , Antibodies, Viral , Mammals/metabolism , COVID-19 Serotherapy
11.
Proc Natl Acad Sci U S A ; 119(32): e2202371119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35917353

ABSTRACT

Epstein-Barr virus (EBV) infects more than 90% of the world's adult population and accounts for a significant cancer burden of epithelial and B cell origins. Glycoprotein B (gB) is the primary fusogen essential for EBV entry into host cells. Here, we isolated two EBV gB-specific neutralizing antibodies, 3A3 and 3A5; both effectively neutralized the dual-tropic EBV infection of B and epithelial cells. In humanized mice, both antibodies showed effective protection from EBV-induced lymphoproliferative disorders. Cryoelectron microscopy analyses identified that 3A3 and 3A5 bind to nonoverlapping sites on domains D-II and D-IV, respectively. Structure-based mutagenesis revealed that 3A3 and 3A5 inhibit membrane fusion through different mechanisms involving the interference with gB-cell interaction and gB activation. Importantly, the 3A3 and 3A5 epitopes are major targets of protective gB-specific neutralizing antibodies elicited by natural EBV infection in humans, providing potential targets for antiviral therapies and vaccines.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Viral Proteins , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/isolation & purification , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/chemistry , Antibodies, Viral/isolation & purification , Antibodies, Viral/therapeutic use , Cryoelectron Microscopy , Epstein-Barr Virus Infections/prevention & control , Epstein-Barr Virus Infections/therapy , Herpesvirus 4, Human/immunology , Humans , Membrane Fusion , Mice , Viral Proteins/immunology
12.
Front Immunol ; 13: 920467, 2022.
Article in English | MEDLINE | ID: mdl-35711430

ABSTRACT

The Epstein-Barr virus (EBV) is the first reported oncogenic herpesvirus that establishes persistent infection in B lymphocytes in 95% of adults worldwide. Glycoprotein B (gB) plays a predominant role in the fusion of the viral envelope with the host cell membrane. Hence, it is of great significance to isolate gB-specific fusion-inhibiting neutralizing antibodies (NAbs). AMMO5 is the only gB NAb but fails to antagonize B-cell infection. It is essential to isolate potent NAbs that can completely block EBV infection of B cells. Using hybridoma technology and neutralization assay, we isolate two gB NAbs 8A9 and 8C12 that are capable of completely neutralizing B-cell infection in vitro. In addition, 8A9 shows cross-reactivity with rhesus lymphocryptovirus (rhLCV) gB. Competitive binding experiments demonstrate that 8A9 and 8C12 recognize novel epitopes that are different from the AMMO5 epitope. The epitopes of 8A9 and 8C12 are mapped to gB D-II, and the AMMO5 epitope is located precisely at gB aa 410-419. We find that 8A9 and 8C12 significantly inhibit gB-derived membrane fusion using a virus-free fusion assay. In summary, this study identifies two gB-specific NAbs that potently block EBV infection of B cells. Our work highlights the importance of gB D-II as a predominant neutralizing epitope, and aids in the rational design of therapeutics or vaccines based on gB.


Subject(s)
Epstein-Barr Virus Infections , Antibodies, Neutralizing , B-Lymphocytes , Epitopes , Herpesvirus 4, Human , Humans
13.
Sci Bull (Beijing) ; 67(13): 1372-1387, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35637645

ABSTRACT

Remarkable progress has been made in developing intramuscular vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); however, they are limited with respect to eliciting local immunity in the respiratory tract, which is the primary infection site for SARS-CoV-2. To overcome the limitations of intramuscular vaccines, we constructed a nasal vaccine candidate based on an influenza vector by inserting a gene encoding the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2, named CA4-dNS1-nCoV-RBD (dNS1-RBD). A preclinical study showed that in hamsters challenged 1 d after single-dose vaccination or 9 months after booster vaccination, dNS1-RBD largely mitigated lung pathology, with no loss of body weight. Moreover, such cellular immunity is relatively unimpaired for the most concerning SARS-CoV-2 variants, especially for the latest Omicron variant. In addition, this vaccine also provides cross-protection against H1N1 and H5N1 influenza viruses. The protective immune mechanism of dNS1-RBD could be attributed to the innate immune response in the nasal epithelium, local RBD-specific T cell response in the lung, and RBD-specific IgA and IgG response. Thus, this study demonstrates that the intranasally delivered dNS1-RBD vaccine candidate may offer an important addition to the fight against the ongoing coronavirus disease 2019 pandemic and influenza infection, compensating limitations of current intramuscular vaccines.

14.
J Virol ; 96(8): e0007522, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35348362

ABSTRACT

Epstein-Barr virus (EBV) is an oncogenic herpesvirus that is associated with 200,000 new cases of cancer and 140,000 deaths annually. To date, there are no available vaccines or therapeutics for clinical usage. Recently, the viral heterodimer glycoprotein gH/gL has become a promising target for the development of prophylactic vaccines against EBV. Here, we developed the anti-gH antibody 6H2 and its chimeric version C6H2, which had full neutralizing activity in epithelial cells and partial neutralizing activity in B cells. C6H2 exhibited potent protection against lethal EBV challenge in a humanized mouse model. The cryo-electron microscopy (cryo-EM) structure further revealed that 6H2 recognized a previously unidentified epitope on gH/gL D-IV that is critical for viral attachment and subsequent membrane fusion with epithelial cells. Our results suggest that C6H2 is a promising candidate in the prevention of EBV-induced lymphoproliferative diseases (LPDs) and may inform the design of an EBV vaccine. IMPORTANCE Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus that establishes lifelong persistence and is related to multiple diseases, including cancers. Neutralizing antibodies (NAbs) have proven to be highly effective in preventing EBV infection and subsequent diseases. Here, we developed an anti-EBV-gH NAb, 6H2, which blocked EBV infection in vitro and in vivo. This 6H2 neutralizing epitope should be helpful to understand EBV infection mechanisms and guide the development of vaccines and therapeutics against EBV infection.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Viral Envelope Proteins , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cryoelectron Microscopy , Epitopes/chemistry , Epstein-Barr Virus Infections/prevention & control , Epstein-Barr Virus Infections/virology , Herpesvirus 4, Human/metabolism , Mice , Vaccines , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/immunology
15.
Viruses ; 13(12)2021 11 28.
Article in English | MEDLINE | ID: mdl-34960650

ABSTRACT

Epstein-Barr virus (EBV) is the first reported oncogenic virus and infects more than 90% of adults worldwide. EBV can establish a latent infection in B lymphocytes which is essential for persistence and transmission. Glycoprotein gp42 is an indispensable member of the triggering complex for EBV entry into a B cell. The N-terminal region of gp42 plays a key role in binding to gH/gL and triggering subsequent membrane fusion. However, no antibody has been reported to recognize this region and the immunogenicity of gp42 N-domain remains unknown. In the present study, we have generated a panel of nine mAbs against the gp42 N-terminal region (six mAbs to gp42-44-61aa and three mAbs to gp42-67-81aa). These mAbs show excellent binding activity and recognize different key residues locating on the gp42 N-domain. Among the nine mAbs, 4H7, 4H8 and 11G10 cross-react with rhLCV-gp42 while other mAbs specifically recognize EBV-gp42. Our newly obtained mAbs provide a useful tool for investigating the gp42 function and viral infection mechanism of γ-Herpesvirus. Furthermore, we assess the immunogenicity of the gp42 N-terminal region using the HBc149 particle as a carrier protein. The chimeric VLPs can induce high antibody titers and elicit neutralizing humoral responses to block EBV infection. More rational and effective designs are required to promote the gp42-N terminal region to become an epitope-based vaccine.


Subject(s)
Antibodies, Viral/immunology , Epstein-Barr Virus Infections/immunology , Glycoproteins/chemistry , Glycoproteins/immunology , Herpesvirus 4, Human/immunology , Viral Proteins/chemistry , Viral Proteins/immunology , Amino Acid Motifs , Amino Acid Sequence , Animals , B-Lymphocytes/immunology , B-Lymphocytes/virology , Epitope Mapping , Epstein-Barr Virus Infections/virology , Glycoproteins/genetics , Herpesvirus 4, Human/chemistry , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/physiology , Humans , Mice , Mice, Inbred BALB C , Viral Proteins/genetics , Virus Internalization
16.
Viruses ; 13(11)2021 10 29.
Article in English | MEDLINE | ID: mdl-34834989

ABSTRACT

Humanized mouse models are used as comprehensive small-animal models of EBV infection. Previously, infectious doses of EBV used in vivo have been determined mainly on the basis of TD50 (50% transforming dose), which is a time-consuming process. Here, we determined infectious doses of Akata-EBV-GFP using green Raji units (GRUs), and characterized dose-dependent effects in humanized mice. We defined two outcomes in vivo, including an infection model and a lymphoma model, following inoculation with low or high doses of Akata-EBV-GFP, respectively. Inoculation with a low dose induced primary B cells to become lymphoblastoid cell lines in vitro, and caused latent infection in humanized mice. In contrast, a high dose of Akata-EBV-GFP resulted in primary B cells death in vitro, and fatal B cell lymphomas in vivo. Following infection with high doses, the frequency of CD19+ B cells decreased, whereas the percentage of CD8+ T cells increased in peripheral blood and the spleen. At such doses, a small part of activated CD8+ T cells was EBV-specific CD8+ T cells. Thus, GRUs quantitation of Akata-EBV-GFP is an effective way to quantify infectious doses to study pathologies, immune response, and to assess (in vivo) the neutralizing activity of antibodies raised by immunization against EBV.


Subject(s)
Epstein-Barr Virus Infections/drug therapy , Epstein-Barr Virus Infections/immunology , Animals , Antigens, CD19/immunology , B-Lymphocytes , CD8-Positive T-Lymphocytes , Disease Models, Animal , Epstein-Barr Virus Infections/pathology , Humans , Lymphoma , Lymphoma, B-Cell , Mice
17.
Vaccines (Basel) ; 9(8)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34451954

ABSTRACT

To date, SARS-CoV-2 pandemic has caused more than 188 million infections and 4.06 million deaths worldwide. The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein has been regarded as an important target for vaccine and therapeutics development because it plays a key role in binding the human cell receptor ACE2 that is required for viral entry. However, it is not easy to detect RBD in Western blot using polyclonal antibody, suggesting that RBD may form a complicated conformation under native condition and bear rare linear epitope. So far, no linear epitope on RBD is reported. Thus, a monoclonal antibody (mAb) that recognizes linear epitope on RBD will become valuable. In the present study, an RBD-specific rabbit antibody named 9E1 was isolated from peripheral blood mononuclear cells (PBMC) of immunized rabbit by RBD-specific single B cell sorting and mapped to a highly conserved linear epitope within twelve amino acids 480CNGVEGFNCYFP491 on RBD. 9E1 works well in Western blot on S protein and immunohistochemistry on the SARS-CoV-2 infected tissue sections. The results demonstrated that 9E1 can be used as a useful tool for pathological and functional studies of SARS-CoV-2.

18.
Sci Transl Med ; 13(606)2021 08 11.
Article in English | MEDLINE | ID: mdl-34285130

ABSTRACT

Multiple safe and effective vaccines that elicit immune responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are necessary to respond to the ongoing coronavirus disease 2019 (COVID-19) pandemic. Here, we developed a protein subunit vaccine composed of spike ectodomain protein (StriFK) plus a nitrogen bisphosphonate-modified zinc-aluminum hybrid adjuvant (FH002C). StriFK-FH002C generated substantially higher neutralizing antibody titers in mice, hamsters, and cynomolgus monkeys than those observed in plasma isolated from COVID-19 convalescent individuals. StriFK-FH002C also induced both TH1- and TH2-polarized helper T cell responses in mice. In hamsters, StriFK-FH002C immunization protected animals against SARS-CoV-2 challenge, as shown by the absence of virus-induced weight loss, fewer symptoms of disease, and reduced lung pathology. Vaccination of hamsters with StriFK-FH002C also reduced within-cage virus transmission to unvaccinated, cohoused hamsters. In summary, StriFK-FH002C represents an effective, protein subunit-based SARS-CoV-2 vaccine candidate.


Subject(s)
COVID-19 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Cricetinae , Humans , Mice , Protein Subunits , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
19.
Theranostics ; 11(13): 6607-6615, 2021.
Article in English | MEDLINE | ID: mdl-33995679

ABSTRACT

SARS-CoV-2 infection, which is responsible for the current COVID-19 pandemic, can cause life-threatening pneumonia, respiratory failure and even death. Characterizing SARS-CoV-2 pathogenesis in primary human target cells and tissues is crucial for developing vaccines and therapeutics. However, given the limited access to clinical samples from COVID-19 patients, there is a pressing need for in vitro/in vivo models to investigate authentic SARS-CoV-2 infection in primary human lung cells or tissues with mature structures. The present study was designed to evaluate a humanized mouse model carrying human lung xenografts for SARS-CoV-2 infection in vivo. Methods: Human fetal lung tissue surgically grafted under the dorsal skin of SCID mice were assessed for growth and development after 8 weeks. Following SARS-CoV-2 inoculation into the differentiated lung xenografts, viral replication, cell-type tropism and histopathology of SARS-CoV-2 infection, and local cytokine/chemokine expression were determined over a 6-day period. The effect of IFN-α treatment against SARS-CoV-2 infection was tested in the lung xenografts. Results: Human lung xenografts expanded and developed mature structures closely resembling normal human lung. SARS-CoV-2 replicated and spread efficiently in the lung xenografts with the epithelial cells as the main target, caused severe lung damage, and induced a robust pro-inflammatory response. IFN-α treatment effectively inhibited SARS-CoV-2 replication in the lung xenografts. Conclusions: These data support the human lung xenograft mouse model as a useful and biological relevant tool that should facilitate studies on the pathogenesis of SARS-CoV-2 lung infection and the evaluation of potential antiviral therapies.


Subject(s)
COVID-19/immunology , Disease Models, Animal , Lung/pathology , Respiratory Mucosa/cytology , SARS-CoV-2/immunology , Aborted Fetus , Animals , COVID-19/pathology , COVID-19/virology , Cells, Cultured , Epithelial Cells/virology , Heterografts , Humans , Lung/immunology , Lung/virology , Lung Transplantation , Male , Mice , Mice, SCID , Primary Cell Culture , SARS-CoV-2/pathogenicity , Virus Replication
20.
Signal Transduct Target Ther ; 6(1): 136, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33790236

ABSTRACT

Epidemiological studies of the COVID-19 patients have suggested the male bias in outcomes of lung illness. To experimentally demonstrate the epidemiological results, we performed animal studies to infect male and female Syrian hamsters with SARS-CoV-2. Remarkably, high viral titer in nasal washings was detectable in male hamsters who presented symptoms of weight loss, weakness, piloerection, hunched back and abdominal respiration, as well as severe pneumonia, pulmonary edema, consolidation, and fibrosis. In contrast with the males, the female hamsters showed much lower shedding viral titers, moderate symptoms, and relatively mild lung pathogenesis. The obvious differences in the susceptibility to SARS-CoV-2 and severity of lung pathogenesis between male and female hamsters provided experimental evidence that SARS-CoV-2 infection and the severity of COVID-19 are associated with gender.


Subject(s)
COVID-19 , SARS-CoV-2/metabolism , Sex Characteristics , Animals , COVID-19/metabolism , COVID-19/pathology , Disease Models, Animal , Disease Susceptibility , Female , Male , Mesocricetus
SELECTION OF CITATIONS
SEARCH DETAIL
...