Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cytokine ; 174: 156439, 2024 02.
Article in English | MEDLINE | ID: mdl-38134557

ABSTRACT

Neuregulin (NRG)-1 plays fundamental roles in several organ systems after binding to its receptors, ErbB2 and ErbB4. This study examines the role of NRG-1 in atopic dermatitis (AD), a chronic skin disease that causes dryness, pruritus, and inflammation. In mice administered Der p 38, the skin presents AD-like symptoms including filaggrin downregulation and infiltration of neutrophils and eosinophils. Noticeably, there is an increased expression of NRG-1, ErbB2, and ErbB4 in the skin. Upregulation of these proteins is significantly correlated to the clinical skin severity score. In human keratinocyte HaCaT cells, exposure to Der p 38 decreased filaggrin expression, and NRG-1 alone had no effect on the expression. However, co-treatment of Der p 38 with NRG-1 enhanced the filaggrin expression decreased by Der p 38. Pre-treatment with AG879 (an ErbB2 inhibitor) or ErbB4 siRNA blocked the recovery of filaggrin expression in the cells after co-treatment with Der p 38 and NRG-1. Der p 38 treatment enhanced the secretion of interleukin-6 (IL-6), IL-8, and monocyte chemoattractant protein-1 (MCP-1). Co-treatment of Der p 38 with NRG-1 lowered the cytokine secretion increased by Der p 38, although NRG-1 alone was not effective on cytokine alteration. Neutrophil apoptosis was not altered by NRG-1 or supernatants of cells treated with NRG-1, but the cell supernatants co-treated with Der p 38 and NRG-1 blocked the anti-apoptotic effects of Der p 38-treated supernatants on neutrophils, which was involved in the activation of caspase 9 and caspase 3. Taken together, we determined that NRG-1 has anti-inflammatory effects in AD triggered by Der p 38. These results will pave the way to understanding the functions of NRG-1 and in the future development of AD treatment.


Subject(s)
Dermatitis, Atopic , Mice , Animals , Humans , Dermatitis, Atopic/genetics , Filaggrin Proteins , Neuregulin-1/pharmacology , Neuregulin-1/metabolism , Neuregulin-1/therapeutic use , Keratinocytes/metabolism , Skin/metabolism , Cytokines/metabolism , Receptor, ErbB-4/metabolism , Receptor, ErbB-4/pharmacology , Anti-Inflammatory Agents/pharmacology
2.
Front Immunol ; 12: 646316, 2021.
Article in English | MEDLINE | ID: mdl-34691014

ABSTRACT

Atopic dermatitis (AD) is a chronic relapsing pruritic disease encompassing skin inflammation and barrier dysfunction. House dust mites are key allergens that augment the development of atopic dermatitis. We aimed to investigate the pathogenic mechanism of AD due to Der p 38, recently identified by us. The frequency of IgE reactivity to Der p 38 in AD subjects was 52.6% (10/19) in the skin prick test and 57.9% (11/19) in the dot blot assay. In human keratinocyte HaCaT cells, Der p 38 triggered the impairment of filaggrin expression and induced pro-inflammatory cytokines such as IL-6, IL-8 and MCP-1 through TLR4, PI3K, AKT, c-Jun N-terminal kinase (JNK) and NF-κB pathway. Supernatants from Der p 38-treated cells blocked filaggrin expression and neutrophil apoptosis. The anti-apoptotic effect of the Der p 38-released molecules on neutrophils was accomplished by inhibition of the caspase 9/3 pathway, and by increased MCL-1 expression and BCL-2/BAX expression ratio. In C57BL/6 wild type (WT) mice, Der p 38 induced a dose-dependent increase of AD-like skin lesions, with enhanced expressions of total and Der p 38-specific IgE. Der p 38 also diminished the expressions of skin barrier proteins and induced JNK activation. However, the AD-like features following cutaneous Der p 38 exposure were observed to be reduced in the TLR4 knockout (KO) group, as compared to the WT group. Skin infiltration of neutrophils, eosinophils and mast cells was increased in the WT mice, but was not portrayed in the TLR4 KO mice. These findings indicate that Der p 38 is a novel mite allergen that triggers AD by lowering skin barrier proteins and increasing inflammatory cells. Results of this study have thereby paved the way to unveil the pathogenic mechanisms of AD.


Subject(s)
Antigens, Dermatophagoides/immunology , Arthropod Proteins/immunology , Dermatitis, Atopic/immunology , Dermatophagoides farinae/immunology , Keratinocytes/immunology , Skin/immunology , Toll-Like Receptor 4/metabolism , Adult , Animals , Antigens, Dermatophagoides/genetics , Antigens, Dermatophagoides/metabolism , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Cytokines/metabolism , Dermatitis, Atopic/genetics , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Dermatophagoides farinae/genetics , Dermatophagoides farinae/metabolism , Disease Models, Animal , Eosinophils/immunology , Eosinophils/metabolism , Eosinophils/pathology , Female , Filaggrin Proteins/metabolism , HaCaT Cells , Humans , Immunoglobulin E/blood , Inflammation Mediators/metabolism , Keratinocytes/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/pathology , Signal Transduction , Skin/metabolism , Skin/pathology , Toll-Like Receptor 4/genetics , Young Adult
3.
J Immunol ; 207(7): 1735-1746, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34462314

ABSTRACT

The house dust mite is the most common cause of allergic diseases, and TLR4 acts as an overarching receptor for allergic responses. This study aimed to identify novel allergen binding to TLR4 in house dust mites and unveil its unique role in allergic responses. Der p 38 was purified and characterized by liquid chromatography tandem mass spectrometry-based peptide mapping. Biolayer interferometry and structure modeling unveiled TLR4-binding activity and the structure of recombinant Der p 38. The allergenicity of Der p 38 was confirmed by a skin prick test, and basophil activation and dot blot assays. The skin prick test identified 24 out of 45 allergic subjects (53.3%) as Der p 38+ subjects. Der p 38-augmented CD203c expression was noted in the basophils of Der p 38+ allergic subjects. In animal experiments with wild-type and TLR4 knockout BALB/c mice, Der p 38 administration induced the infiltration of neutrophils as well as eosinophils and exhibited clinical features similar to asthma via TLR4 activation. Persistent Der p 38 administration induced severe neutrophil inflammation. Der p 38 directly suppressed the apoptosis of allergic neutrophils and eosinophils, and enhanced cytokine production in human bronchial epithelial cells, inhibiting neutrophil apoptosis. The mechanisms involved TLR4, LYN, PI3K, AKT, ERK, and NF-κB. These findings may contribute to a deep understanding of Der p 38 as a bridge allergen between eosinophilic and neutrophilic inflammation in the pathogenic mechanisms of allergy.


Subject(s)
Antigens, Dermatophagoides/immunology , Eosinophils/immunology , Hypersensitivity/immunology , Neutrophils/physiology , Respiratory Mucosa/immunology , Animals , Antigens, Dermatophagoides/isolation & purification , Cells, Cultured , Disease Models, Animal , Epitope Mapping , Female , Humans , Immunomodulation , Mice , Mice, Inbred BALB C , Mice, Knockout , Neutrophil Activation , Protein Binding , Signal Transduction , Skin Tests , Toll-Like Receptor 4/metabolism
4.
Front Immunol ; 11: 1258, 2020.
Article in English | MEDLINE | ID: mdl-32903598

ABSTRACT

S100A8 and S100A9 function as essential factors in inflammation and also exert antitumor or tumorigenic activity depending on the type of cancer. Chronic eosinophilic leukemia (CEL) is a rare hematological malignancy having elevated levels of eosinophils and characterized by the presence of the FIP1L1-PDGFRA fusion gene. In this study, we examined the pro-apoptotic mechanisms of S100A8 and S100A9 in FIP1L1-PDGFRα+ eosinophilic cells and hypereosinophilic patient cells. S100A8 and S100A9 induce apoptosis of the FIP1L1-PDGFRα+ EoL-1 cells via TLR4. The surface TLR4 expression increased after exposure to S100A8 and S100A9 although total TLR4 expression decreased. S100A8 and S100A9 suppressed the FIP1L1-PDGFRα-mediated signaling pathway by downregulating FIP1L1-PDGFRα mRNA and protein expression and triggered cell apoptosis by regulating caspase 9/3 pathway and Bcl family proteins. S100A8 and S100A9 also induced apoptosis of imatinib-resistant EoL-1 cells (EoL-1-IR). S100A8 and S100A9 blocked tumor progression of xenografted EoL-1 and EoL-1-IR cells in NOD-SCID mice and evoked apoptosis of eosinophils derived from hypereosinophilic syndrome as well as chronic eosinophilic leukemia. These findings may contribute to a progressive understanding of S100A8 and S100A9 in the pathogenic and therapeutic mechanism of hematological malignancy.


Subject(s)
Apoptosis , Calgranulin A/metabolism , Calgranulin B/metabolism , Hypereosinophilic Syndrome/etiology , Hypereosinophilic Syndrome/metabolism , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cells, Cultured , Chronic Disease , Drug Resistance, Neoplasm , Female , Gene Expression , Humans , Hypereosinophilic Syndrome/drug therapy , Hypereosinophilic Syndrome/pathology , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Models, Biological , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Recombinant Proteins
5.
Int J Med Sci ; 17(4): 498-509, 2020.
Article in English | MEDLINE | ID: mdl-32174780

ABSTRACT

S100A8 and S100A9 are important proteins in the pathogenesis of allergy. Asthma is an allergic lung disease, characterized by bronchial inflammation due to leukocytes, bronchoconstriction, and allergen-specific IgE. In this study, we examined the role of S100A8 and S100A9 in the interaction of cytokine release from bronchial epithelial cells, with constitutive apoptosis of neutrophils. S100A8 and S100A9 induce increased secretion of neutrophil survival cytokines such as MCP-1, IL-6 and IL-8. This secretion is suppressed by TLR4 inhibitor), LY294002, AKT inhibitor, PD98059, SB202190, SP600125, and BAY-11-7085. S100A8 and S100A9 also induce the phosphorylation of AKT, ERK, p38 MAPK and JNK, and activation of NF-κB, which were blocked after exposure to TLR4i, LY294002, AKTi, PD98059, SB202190 or SP600125. Furthermore, supernatants collected from bronchial epithelial cells after S100A8 and S100A9 stimulation suppressed the apoptosis of normal and asthmatic neutrophils. These inhibitory mechanisms are involved in suppression of caspase 9 and caspase 3 activation, and BAX expression. The degradation of MCL-1 and BCL-2 was also blocked by S100A8 and S100A9 stimulation. Essentially, neutrophil apoptosis was blocked by co-culture of normal and asthmatic neutrophils with BEAS-2B cells in the presence of S100A8 and S100A9. These findings will enable elucidation of asthma pathogenesis.


Subject(s)
Asthma/metabolism , Calgranulin A/therapeutic use , Calgranulin B/pharmacology , Apoptosis/drug effects , Blotting, Western , Caspase 3/metabolism , Caspase 9/metabolism , Cell Line , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay , Eosinophils/drug effects , Eosinophils/metabolism , Humans , Neutrophils/drug effects , Neutrophils/metabolism , Toll-Like Receptor 4/metabolism
6.
Int J Med Sci ; 16(12): 1604-1613, 2019.
Article in English | MEDLINE | ID: mdl-31839748

ABSTRACT

Chaenomeles sinensis Koehne (CS) has been used in a traditional oriental medicine for treating throat diseases, anaphylaxis, viral infection, and inflammation. This study investigated the underlying mechanism of anti-allergic effect of CS. Leaves of CS plants were dried, powdered, and then underwent extraction with DMSO. Both ELISA and western blotting were performed to evaluate cytokine concentration and the expression and activation of filaggrin and JNK. Five-week-old female NC/Nga mice were used as an AD-like mouse model by treating them with 2,4-dinitrochlorobenzene (DNCB). The secretion of TARC, MCP-1, and IL-8 is increased by TNF-α and IFN-γ in HaCaT cells, and CS extract inhibited the increased production of TARC, MCP-1, and IL-8. TNF-α and IFN-γ suppressed filaggrin expression by activating JNK. CS extract recovered the expression of filaggrin decreased by TNF-α and IFN-γ by blocking the activation of JNK. In vivo experiment, CS administration reduced thickening of the epidermis and infiltration of inflammatory cells into the dermis as compared to DNCB treatment. Moreover, the decrease of filaggrin expression due to DNCB treatment was recovered by CS administration. The serum IgE level was decreased by CS treatment. The levels of IL-4, IL-5, IL-13 and eotaxin in mouse splenocytes increased after treatment with concanavalin A, and the secretions of IL-4, IL-5, IL-13 and eotaxin were lower in the CS-treated group than in the DNCB group. These results may contribute to the development of a CS-based drug for the treatment of atopic dermatitis.


Subject(s)
Cytokines/genetics , Dermatitis, Atopic/drug therapy , Intermediate Filament Proteins/genetics , Rosaceae/chemistry , Animals , Dermatitis, Atopic/genetics , Dermatitis, Atopic/pathology , Dinitrochlorobenzene/pharmacology , Disease Models, Animal , Filaggrin Proteins , Gene Expression Regulation/drug effects , Humans , Inflammation/drug therapy , Inflammation/genetics , Inflammation/pathology , Interferon-gamma/genetics , Keratinocytes/drug effects , Mice , Plant Extracts/chemistry , Plant Extracts/pharmacology
7.
Int J Med Sci ; 16(8): 1116-1122, 2019.
Article in English | MEDLINE | ID: mdl-31523174

ABSTRACT

This study investigated the anti-allergic effect of Poncirus trifoliata (L.) Raf. (PT) on human keratinocytic HaCaT cells in vitro and on 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis-like lesions in vivo. The release of TARC, MCP-1, IL-6 and IL-8 is increased by IFN-γ and TNF-α in HaCaT cells, and PT extract suppressed the increased production of TARC, MCP-1, IL-6, and IL-8. PT extract recovered the expression of filaggrin decreased by IFN-γ and TNF-α. in vivo experiment, PT administration decreased the skin severity score, thickening of the epidermis, movement of inflammatory cells into the dermis, and serum IgE level as compared to DNCB treatment. Moreover, the decrease of filaggrin and loricrin induced by DNCB treatment was recovered by PT administration. The levels of IL-4, IL-5, IL-13 and eotaxin in mouse splenocytes increased after treatment with concanavalin A, and the secretions of IL-4, IL-5, IL-13 and eotaxin were lower in the PT-treated group than in the DNCB group. These findings may indicate that PT is useful in drug development for the treatment of AD.


Subject(s)
Dermatitis, Atopic/drug therapy , Keratinocytes/drug effects , Keratinocytes/pathology , Plant Extracts/pharmacology , Poncirus/chemistry , Animals , Cell Line , Chemokine CCL11/metabolism , Cytokines/metabolism , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/pathology , Dinitrochlorobenzene/toxicity , Female , Filaggrin Proteins , Humans , Immunoglobulin E/blood , Interferon-gamma/pharmacology , Membrane Proteins/metabolism , Mice, Inbred Strains , S100 Proteins/metabolism , Spleen/cytology , Spleen/metabolism , Tumor Necrosis Factor-alpha/pharmacology
8.
Immun Ageing ; 15: 13, 2018.
Article in English | MEDLINE | ID: mdl-29755573

ABSTRACT

BACKGROUND: The pathogenesis of asthma, which is an allergic lung disease, is associated with a variety of allergens such as house dust mite, pollen, and mould, IgE containing serum IgE and allergen-specific-IgE, and inflammatory cytokines including thymus and activation-regulated chemokine (TARC)/CCL17. Because aging is an essential factor in the pathogenesis of asthma, we examined biomarkers related to asthmatic subjects depending on age. RESULTS: Physiological indices such as FEV1(forced expiratory capacity in 1 s), FEV1 (% predicted), and FEV1/FVC(forced vital capacity) (%) in asthmatic subjects were lower than those in normal subjects. Total IgE, Der p1 specific IgE, and Der f1 specific IgE were elevated in serum of asthmatics relative to normal individuals. Regulated on activation, normal T cell expressed and secreted (RANTES)/CCL5 in serum and interleukin 6 (IL-6), interleukin 8 (IL-8), monocyte chemoattractant protein (MCP)-1/CCL2, RANTES, and macrophage inflammatory protein (MIP)-1α/CCL3 in bronchoalveolar lavage fluid (BALF) of asthmatic subjects were higher than in normal individuals. Upon classification of experimental groups depending on age, physiological indices and Der p1-specific IgE (class) were decreased in middle aged adult and elderly adult groups relative to the young adult group. TARC levels in serum were strongly elevated in the elderly adult group relative to the young adult and the middle aged adult groups. TARC in serum was related to total IgE in serum in the elderly adult group. CONCLUSIONS: Taken together, although TARC in serum and BALF is not different between normal and asthmatic individuals, TARC increases in serum of elderly asthmatic subjects. The level of TARC has a positive effect on the level of IgE in the elderly adult group. These findings may help us better understand the relationship of pathogenesis of allergic diseases and aging.

SELECTION OF CITATIONS
SEARCH DETAIL
...