Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5682, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971854

ABSTRACT

Accumulating evidences are challenging the paradigm that methane in surface water primarily stems from the anaerobic transformation of organic matters. Yet, the contribution of oxygenic photosynthetic bacteria, a dominant species in surface water, to methane production remains unclear. Here we show methanogenesis triggered by the interaction between oxygenic photosynthetic bacteria and anaerobic methanogenic archaea. By introducing cyanobacterium Synechocystis PCC6803 and methanogenic archaea Methanosarcina barkeri with the redox cycling of iron, CH4 production was induced in coculture biofilms through both syntrophic methanogenesis (under anoxic conditions in darkness) and abiotic methanogenesis (under oxic conditions in illumination) during the periodic dark-light cycles. We have further demonstrated CH4 production by other model oxygenic photosynthetic bacteria from various phyla, in conjunction with different anaerobic methanogenic archaea exhibiting diverse energy conservation modes, as well as various common Fe-species. These findings have revealed an unexpected link between oxygenic photosynthesis and methanogenesis and would advance our understanding of photosynthetic bacteria's ecological role in the global CH4 cycle. Such light-driven methanogenesis may be widely present in nature.


Subject(s)
Methane , Photosynthesis , Synechocystis , Methane/metabolism , Synechocystis/metabolism , Oxidation-Reduction , Methanosarcina barkeri/metabolism , Oxygen/metabolism , Biofilms/growth & development , Anaerobiosis , Iron/metabolism , Bacteria/metabolism , Bacteria/genetics , Light , Archaea/metabolism , Archaea/genetics
2.
Sci Total Environ ; 896: 165335, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37414167

ABSTRACT

Under the environmental sustainability concept, landfill leachate concentrate can be up-cycled as a useful resource. Practical strategy for effective management of landfill leachate concentrate is to recover the existing humate as fertilizer purpose for plant growth. Herein, we designed an electro-neutral nanofiltration membrane to separate the humate and inorganic salts for achieving a sufficient humate recovery from leachate concentrate. The electro-neutral nanofiltration membrane yielded a high retention of humate (96.54 %) with an extremely low salt rejection (3.47 %), tremendously outperforming the state-of-the-art nanofiltration membranes and exhibiting superior promise in fractionation of humate and inorganic salts. With implementation of the pressure-driven concentration process, the electro-neutral nanofiltration membrane enriched the humate from 1756 to 51,466 mg∙L-1 at a fold of 32.6, enabling 90.0 % humate recovery and 96.4 % desalination efficiency from landfill leachate concentrate. Furthermore, the recovered humate not only exerted no phytotoxicity, but also significantly promoted the metabolism of red bean plants, serving as an effective green fertilizer. The study provides a conceptual and technical platform using high-performance electro-neutral nanofiltration membranes to extract the humate as a promising nutrient for fertilizer application, in view of sustainable landfill leachate concentrate treatment.

SELECTION OF CITATIONS
SEARCH DETAIL