Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(17): 16223-16232, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30969110

ABSTRACT

A high-performance, flexible, and transparent heater based on a hybrid of dry-spun carbon nanotubes (CNT), which is pulled out directly from a super vertically aligned CNT forest, and graphene is fabricated. The electrical, optical, and electromechanical properties of two different kinds of hybrid devices, graphene above or below the CNT film, and simple CNT film heating devices that are made of one or two layers of CNTs, are studied. The results prove that the hybrid structured film heaters are superior to the simple CNT film heaters. The simple single-layer CNT film and double-layer CNT film heaters attain maximum temperatures of 48 and 64 °C with transmittances of 73 and 64% at a wavelength of 550 nm, respectively, whereas the single-layer CNT sheet/graphene/PET and graphene/single-layer CNT sheet/PET hybrid heaters attain maximum temperatures of 81 and 85 °C with transmittances of 68 and 71%, respectively. The 10 000 bending cycle test suggests that the graphene/single-layer CNT sheet/PET heater has good mechanical and thermal stability. Further, defrost test and portable heating with a 9 V battery prove the possibility of using the hybrid heater for vehicle defrosting, portable heating, and wearable devices.

2.
ACS Appl Mater Interfaces ; 9(20): 17499-17507, 2017 May 24.
Article in English | MEDLINE | ID: mdl-28471157

ABSTRACT

Wearable pressure sensors are crucial building blocks for potential applications in real-time health monitoring, artificial electronic skins, and human-to-machine interfaces. Here we present a highly sensitive, simple-architectured wearable resistive pressure sensor based on highly compliant yet robust carbon composite conductors made of a vertically aligned carbon nanotube (VACNT) forest embedded in a polydimethylsiloxane (PDMS) matrix with irregular surface morphology. A roughened surface of the VACNT/PDMS composite conductor is simply formed using a sandblasted silicon master in a low-cost and potentially scalable manner and plays an important role in improving the sensitivity of resistive pressure sensor. After assembling two of the roughened composite conductors, our sensor shows considerable pressure sensitivity of ∼0.3 kPa-1 up to 0.7 kPa as well as stable steady-state responses under various pressures, a wide detectable range of up to 5 kPa before saturation, a relatively fast response time of ∼162 ms, and good reproducibility over 5000 cycles of pressure loading/unloading. The fabricated pressure sensor can be used to detect a wide range of human motions ranging from subtle blood pulses to dynamic joint movements, and it can also be used to map spatial pressure distribution in a multipixel platform (in a 4 × 4 pixel array).

SELECTION OF CITATIONS
SEARCH DETAIL