Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Molecules ; 28(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38138457

ABSTRACT

Various thicknesses of TiO2 films were prepared by the sol-gel method and spin-coating process. These prepared TiO2 films exhibit thickness-dependent photoelectrochemical performance. The 1.09-µm-thickTiO2 film with 20 spin-coating layers (TiO2-20) exhibits the highest short circuit current of 0.21 mAcm-2 and open circuit voltage of 0.58 V among all samples and exhibits a low PEC reaction energy barrier and fast kinetic process. Photoelectrocatalytic (PEC) degradation of methyl orange (MO) by TiO2 films was carried out under UV light. The roles of bias, film thickness, pH value, and ion properties were systematically studied because they are the four most important factors dominating the PEC performance of TiO2 films. The optimized values of bias, film thickness, and pH are 1.0 V, 1.09 µm, and 12, respectively, which were obtained according to the data of the PEC degradation of MO. The effect of ion properties on the PEC efficiency of TiO2-20 was also analyzed by using halide as targeted ions. The "activated" halide ions significantly promoted the PEC efficiency and the order was determined as Br > Cl > F. The PEC efficiency increased with increasing Cl content, up until the optimized value of 30 × 10-3 M. Finally, a complete degradation of MO by TiO2-20 was achieved in 1.5 h, with total optimization of the four factors: 1.0 V bias, 1.09-µm-thick, pH 12, and 30 × 10-3 M Cl ion content. The roles of reactive oxygen species and electric charge of photoelectrodes were also explored based on photoelectrochemical characterizations and membrane-separated reactors. Hydrogen peroxide, superoxide radical, and hydroxyl radical were found responsible for the decolorization of MO.

2.
Molecules ; 27(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36557830

ABSTRACT

With the rapid development of modern industries, water pollution has become an urgent problem that endangers the health of human and wild animals. The photocatalysis technique is considered an environmentally friendly strategy for removing organic pollutants in wastewater. As an important member of Bi-series semiconductors, Bi2WO6 is widely used for fabricating high-performance photocatalysts. In this review, the recent advances of Bi2WO6-based photocatalysts are summarized. First, the controllable synthesis, surface modification and heteroatom doping of Bi2WO6 are introduced. In the respect of Bi2WO6-based composites, existing Bi2WO6-containing binary composites are classified into six types, including Bi2WO6/carbon or MOF composite, Bi2WO6/g-C3N4 composite, Bi2WO6/metal oxides composite, Bi2WO6/metal sulfides composite, Bi2WO6/Bi-series composite, and Bi2WO6/metal tungstates composite. Bi2WO6-based ternary composites are classified into four types, including Bi2WO6/g-C3N4/X, Bi2WO6/carbon/X, Bi2WO6/Au or Ag-based materials/X, and Bi2WO6/Bi-series semiconductors/X. The design, microstructure, and photocatalytic performance of Bi2WO6-based binary and ternary composites are highlighted. Finally, aimed at the existing problems in Bi2WO6-based photocatalysts, some solutions and promising research trends are proposed that would provide theoretical and practical guidelines for developing high-performance Bi2WO6-based photocatalysts.


Subject(s)
Environmental Pollutants , Humans , Oxides/chemistry , Carbon , Semiconductors
3.
Autoimmunity ; 55(6): 351-359, 2022 09.
Article in English | MEDLINE | ID: mdl-35766145

ABSTRACT

BACKGROUND: Regulatory B cells (Bregs) are a subset of B cells that secrete interleukin 10 (IL-10) and play a vital role in suppressing the immune response. The aim of this study was to evaluate the proportion of Bregs in patients with thymoma. METHODS: The proportions of subgroups of Bregs in 23 patients with thymoma and 15 healthy controls were detected by flow cytometry. The serum IL-2, IL-4, IL-6, IL-10, IL-17A, IFN-γ, and TNF-α levels of the subjects were measured using a cytometric bead array (CBA). RESULTS: The proportions of circulating IL-10+ B cells, IL-10+CD24hiCD38hi Bregs, and IL-10+CD24hiCD27+ Bregs and the serum IL-10 level were significantly higher in patients with thymoma than in the control group and were negatively correlated with the Karnofsky Performance Scale (KPS) score. The serum levels of cytokines IL-2, IL-6, IFN-γ, and TNF-α were higher and serum IL-17A level was lower in patients with thymoma. Patients with advanced-stage thymoma exhibited significantly higher proportions of IL-10-producing Bregs and a higher serum IL-10 level. After tumour resection, the frequency of circulating IL-10+CD24hiCD38hi Bregs and the serum IL-10 level were significantly decreased in patients with thymoma. The serum IL-10 levels exhibited the best accuracy in assessing the risk of thymoma occurrence in this study. CONCLUSIONS: The expression of IL-10 produced by Bregs is increased in patients with thymoma, particularly those with advanced-stage disease, which may suggest that Bregs are involved in the pathogenesis and progression of thymoma.


Subject(s)
B-Lymphocytes, Regulatory , Thymoma , Thymus Neoplasms , B-Lymphocytes, Regulatory/metabolism , B-Lymphocytes, Regulatory/pathology , Humans , Interleukin-10/metabolism , Interleukin-17/metabolism , Interleukin-2/metabolism , Interleukin-6/metabolism , Thymoma/metabolism , Thymoma/pathology , Thymus Neoplasms/diagnosis , Thymus Neoplasms/metabolism , Thymus Neoplasms/pathology , Tumor Necrosis Factor-alpha/metabolism
4.
Front Chem ; 10: 870541, 2022.
Article in English | MEDLINE | ID: mdl-35464230

ABSTRACT

To enhance the electrochemical performance of MnO2/graphene composite, herein, thermally-exfoliated graphite (TE-G) is adopted as a raw material, and a hydrothermal reaction is conducted to achieve the exfoliation of TE-G and the loading of MnO2 nanosheets. Through optimizing the TE-G/KMnO4 ratio in the redox reaction between carbon and KMnO4, flower-like MnO2/G microspheres (MnO2/G-10) are obtained with 83.2% MnO2 and 16.8% residual graphene. Meanwhile, corresponding MnO2/rGO composites are prepared by using rGO as raw materials. Serving as a working electrode in a three-electrode system, MnO2/G-10 composite displays a specific capacitance of 500 F g-1 at 1 A g-1, outstanding rate performance, and capacitance retention of 85.3% for 5,000 cycles. The performance is much better than that of optimized MnO2/rGO composite. We ascribe this to the high carbon fraction in TE-G resulting in a high fraction of MnO2 in composite, and the oxygen-containing groups in rGO reduce the resulting MnO2 fraction in the composite. The superior electrochemical performance of MnO2/G-10 is dependent on the hierarchical porous structure constructed by MnO2 nanosheet arrays and the residual graphene layer in the composite. In addition, a supercapacitor assembled by TE-G negative electrode and MnO2/G positive electrode also exhibits superior performance. In consideration of the low cost of raw materials, the MnO2/G composite exhibits great application potential in the field of supercapacitors.

5.
Cancer Cell Int ; 21(1): 292, 2021 Jun 05.
Article in English | MEDLINE | ID: mdl-34090440

ABSTRACT

BACKGROUND: Lung adenocarcinoma (LAD) is one of the most frequently diagnosed pathological categories of human lung cancer. Nevertheless, the link between long non-coding RNA (lncRNA) LINC01116 and LAD remains poorly investigated. METHODS: QRT-PCR and western blot were applied for quantifying the expression of RNAs and proteins. Both functional experiments assays in vitro and xenografts model in vivo were implemented for analyzing LINC01116 function in LAD while molecular relationship among RNAs was investigated via mechanism experiments. RESULTS: LINC01116 was expressed at an abnormally high level in LAD, which was induced by transcription activator EGR1. LINC01116 depletion restrained proliferation, migration and invasion, yet facilitated apoptosis of LAD cells. MiR-744-5p could bind to LINC01116. MiR-744-5p inhibitor reversed the inhibitory effects of silencing LINC01116 on LAD malignant behaviors. In addition, cell division cycle-associated protein 4 (CDCA4) shared binding sites with miR-744-5p. Silencing LINC01116 elicited decline in CDCA4 mRNA and protein levels. Moreover, CDCA4 up-regulation could counteract the biological effects of LINC01116 knockdown on LAD cells. CONCLUSION: Our data revealed that LINC01116 promoted malignant behaviors of LAD cells by targeting miR-744-5p/CDCA4 axis, implying the theoretical potential of LINC01116 as a novel target for LAD treatment.

6.
J Mol Histol ; 52(4): 643-650, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33977464

ABSTRACT

Lung diseases, including asthma, pose a serious global health issue. Loss of mitochondrial function and decreased mitochondrial biogenesis play pivotal roles in the initiation and progression of chronic lung diseases. Thus, maintaining mitochondrial function and homeostasis is an important treatment goal. Zafirlukast is a CysLTR1 antagonist that is widely used as an adjuvant treatment for asthma. In the present study, we investigated the effects of zafirlukast in vitro using human bronchial epithelial cells (BECs). We performed measurements of oxygen consumption and bioenergetics and found that zafirlukast increased mitochondrial respiration and biogenesis in human BECs as evidenced by increased mitochondrial mass and mtDNA/nDNA. Through real-time PCR and western blot analysis, we found that zafirlukast significantly increased the expression of PGC-1α, NRF1, and TFAM at both the mRNA and protein levels. Finally, we determined that these effects are mediated through CREB signaling and that inhibition of CREB with its specific inhibitor H89 abolished the effects of zafirlukast described above. Thus, zafirlukast might have potential in enhancing mitochondrial function by promoting mitochondrial biogenesis in human bronchial epithelial cells through upregulating the expression of PGC-1α and activating the CREB pathway.


Subject(s)
Bronchi/cytology , Epithelial Cells/drug effects , Indoles/pharmacology , Leukotriene Antagonists/pharmacology , Mitochondria/drug effects , Phenylcarbamates/pharmacology , Sulfonamides/pharmacology , Blotting, Western , CREB-Binding Protein/metabolism , Cell Respiration/drug effects , Cell Respiration/physiology , DNA, Mitochondrial/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Epithelial Cells/metabolism , Humans , Microscopy, Electron , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Nuclear Respiratory Factor 1/genetics , Nuclear Respiratory Factor 1/metabolism , Organelle Biogenesis , Oxygen Consumption/physiology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Phosphorylation , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Transcription Factors/genetics , Transcription Factors/metabolism
7.
RSC Adv ; 11(43): 26855-26875, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-35479985

ABSTRACT

Photocatalysis has been considered as an environmental-friendly strategy for degradation of organic pollutants to the nontoxic products of H2O and CO2. Compared to metal oxide semiconductors, BiOX (X = Cl, Br and I) photocatalysts exhibit some advantages, such as, unique layered structure, good chemical stability and superior photocatalytic activity. This review provides an overview on the controllable synthesis of BiOX-based photocatalysts and their application in photodegradation of organic pollutants. Firstly, the controllable synthesis of BiOX is introduced, including hydrothermal, solvothermal, hydrolysis, precipitation, two-phase methods, ultrasonic/microwave-assisted methods, and physical methods. Then, the doping and surface modification of BiOX are summarized, including non-metal doping, metal doping, dual doping, and the modification by introducing surface terminations or carriers. In addition, the heterojunctions of BiOX/BiOY and BiOX/Bi m O n X z are introduced. At last, the promising research trends of BiOX-based photocatalysts are put forward. The main purpose is providing practical guidelines for developing high-performance BiOX photocatalysts.

8.
Cancer Med ; 9(20): 7706-7716, 2020 10.
Article in English | MEDLINE | ID: mdl-32871048

ABSTRACT

Plenty of reports have probed the involvement of abnormally expressed lncRNAs in multiple cancers, including lung squamous cell carcinoma (LUSC). Through online database GEPIA, lncRNA PITPNA antisense RNA 1 (PITPNA-AS1) was highly expressed in LUSC samples, and these tendency was further affirmed in LUSC cells. The aim of current study was to investigate the related mechanism of PITPNA-AS1 in LUSC. Functional experiments verified that depletion of PITPNA-AS1 hampered the proliferative and migratory abilities, but accelerated apoptosis of LUSC cells. Additionally, we observed the increased expression of HMGB3 and its positive correlation with PITPNA-AS1 in LUSC samples. Interestingly, PITPNA-AS1 mainly located in the cytosol of LUSC cells, and also affected mRNA stability of HMGB3. Furthermore, the repressed mRNA stability of HMGB3 by PITPNA-AS1 via TAF15 was exposed through mechanism experiments. The mediatory function of PITPNA-AS1 on HMGB3 was validated via rescue assays. All in all, PITPNA-AS1 promoted the proliferation and migration of LUSC cells via stabilizing HMGB3 by TAF15. In conclusion, our study displayed a novel mechanism underlying PITPNA-AS1 in LUSC cells.


Subject(s)
Carcinoma, Squamous Cell/genetics , Gene Expression Regulation, Neoplastic , HMGB3 Protein/genetics , Lung Neoplasms/genetics , RNA, Long Noncoding/genetics , TATA-Binding Protein Associated Factors/genetics , Apoptosis/genetics , Biomarkers, Tumor , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Fluorescent Antibody Technique , HMGB3 Protein/metabolism , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , RNA Stability , TATA-Binding Protein Associated Factors/metabolism
9.
Exp Ther Med ; 20(2): 1637-1643, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32765677

ABSTRACT

Non-small cell lung cancer (NSCLC) is a type of cancer that is associated with high prevalence and high mortality rates in China. Therefore, it is of importance to identify the mechanisms underlying NSCLC progression. In the present study, reverse transcription-quantitative PCR was performed to measure the expression of microRNA (miR)-365b in NSCLC cell lines. In addition, the biological roles of miR-365b and N-acetylgalactosaminyltransferase 4 (GALNT4) were investigated by manipulating the expression levels of miR-365b and GALNT4 in NSCLC cells. It was found that miR-365b expression was reduced in NSCLC tissues and cells. Overexpression of miR-365b inhibited NSCLC cell proliferation whilst promoting apoptosis, but miR-365b knockdown promoted NSCLC cell proliferation. In addition, it was demonstrated that miR-365b regulated the proliferation and apoptosis of NSCLC cells by targeting GALNT4 expression. Collectively, the present study identified a miR-365b/GALNT4 regulatory axis in NSCLC, suggesting that miR-365b may serve as a therapeutic target for NSCLC.

10.
Molecules ; 25(8)2020 Apr 23.
Article in English | MEDLINE | ID: mdl-32340399

ABSTRACT

Lithium-sulfur batteries are very promising next-generation energy storage batteries due to their high theoretical specific capacity. However, the shuttle effect of lithium-sulfur batteries is one of the important bottlenecks that limits its rapid development. Herein, physical and chemical dual adsorption of lithium polysulfides are achieved by designing a novel framework structure consisting of MnO2, reduced graphene oxide (rGO), and carbon nanotubes (CNTs). The framework-structure composite of MnO2/rGO/CNTs is prepared by a simple hydrothermal method. The framework exhibits a uniform and abundant mesoporous structure (concentrating in ~12 nm). MnO2 is an α phase structure and the α-MnO2 also has a significant effect on the adsorption of lithium polysulfides. The rGO and CNTs provide a good physical adsorption interaction and good electronic conductivity for the dissolved polysulfides. As a result, the MnO2/rGO/CNTs/S cathode delivered a high initial capacity of 1201 mAh g-1 at 0.2 C. The average capacities were 916 mAh g-1, 736 mAh g-1, and 547 mAh g-1 at the current densities of 0.5 C, 1 C, and 2 C, respectively. In addition, when tested at 0.5 C, the MnO2/rGO/CNTs/S exhibited a high initial capacity of 1010 mAh g-1 and achieved 780 mAh g-1 after 200 cycles, with a low capacity decay rate of 0.11% per cycle. This framework-structure composite provides a simple way to improve the electrochemical performance of Li-S batteries.


Subject(s)
Electric Power Supplies , Graphite/chemistry , Lithium/chemistry , Manganese Compounds/chemistry , Metal-Organic Frameworks/chemistry , Nanotubes, Carbon/chemistry , Sulfur/chemistry , Electrochemistry , Electrodes , Metal-Organic Frameworks/ultrastructure , Spectrum Analysis
11.
Mol Carcinog ; 59(8): 875-885, 2020 08.
Article in English | MEDLINE | ID: mdl-32275336

ABSTRACT

Lung adenocarcinoma (LUAD) is one of the most common diagnosed pathological categories of lung cancer. Long noncoding RNAs (lncRNAs) have been manifested to be key regulators in modulating multiple cancers. Nevertheless, the pathologic role of lncRNA WDFY3-AS2 in LUAD remains elusive. The relative messenger RNA and protein levels were assessed by quantitative reverse transcription-polymerase chain reaction and Western blot analyses, respectively. Colony formation, carboxyfluorescein succinimidyl ester, terminal deoxynucleotidyl transferase dUTP nick-end labeling, wound-healing, and transwell invasion assays were performed to study the underlying role of WDFY3-AS2 in LUAD. Luciferase reporter assay, chromatin immunoprecipitation, RNA pull down, and RNA immunoprecipitation assays were conducted to probe into the interactions between relevant genes. WDFY3-AS2 expression was elevated in LUAD and WDFY3-AS2 transcription was activated by transcription factor USF1. Silencing WDFY3-AS2 could suppress cell proliferation, migration, and invasion, whereas accelerate cell apoptosis in LUAD. Molecular mechanism assays revealed that WDFY3-AS2 could bind to miR-491-5p and miR-491-5p inhibition could reverse the inhibitory effect of WDFY3-AS2 silence on LUAD progression. Besides, zinc finger protein 703 (ZNF703) was identified as a downstream target of miR-491-5p and its expression could be upregulated by WDFY3-AS2. Further, rescue assays uncovered that ZNF703 overexpression could restore the suppressive influence of silenced WDFY3-AS2 on LUAD development. USF1-acitvated WDFY3-AS2 promotes LUAD progression via targeting miR-491-5p/ZNF703 axis, suggesting the potential value of WDFY3-AS2 as a novel target for LUAD treatment.


Subject(s)
Adenocarcinoma of Lung/pathology , Biomarkers, Tumor/metabolism , Carrier Proteins/metabolism , Lung Neoplasms/pathology , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Upstream Stimulatory Factors/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Animals , Apoptosis , Biomarkers, Tumor/genetics , Carrier Proteins/genetics , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Prognosis , Tumor Cells, Cultured , Upstream Stimulatory Factors/genetics , Xenograft Model Antitumor Assays
12.
Polymers (Basel) ; 12(2)2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32033308

ABSTRACT

With the urgent requirement for high-performance rechargeable Li-S batteries, besides various carbon materials and metal compounds, lots of conducting polymers have been developed and used as components in Li-S batteries. In this review, the synthesis of polyaniline (PANI), polypyrrole (PPy) and polythiophene (PTh) is introduced briefly. Then, the application progress of the three conducting polymers is summarized according to the function in Li-S batteries, including coating layers, conductive hosts, sulfur-containing compounds, separator modifier/functional interlayer, binder and current collector. Finally, according to the current problems of conducting polymers, some practical strategies and potential research directions are put forward. We expect that this review will provide novel design ideas to develop conducting polymer-containing high-performance Li-S batteries.

13.
Molecules ; 25(2)2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31936531

ABSTRACT

Among the popular electrochemical energy storage devices, supercapacitors (SCs) have attracted much attention due to their long cycle life, fast charge and discharge, safety, and reliability. Transition metal oxides are one of the most widely used electrode materials in SCs because of the high specific capacitance. Among various transition metal oxides, Co3O4 and related composites are widely reported in SCs electrodes. In this review, we introduce the synthetic methods of Co3O4, including the hydrothermal/solvothermal method, sol-gel method, thermal decomposition, chemical precipitation, electrodeposition, chemical bath deposition, and the template method. The recent progress of Co3O4-containing electrode materials is summarized in detail, involving Co3O4/carbon, Co3O4/conducting polymer, and Co3O4/metal compound composites. Finally, the current challenges and outlook of Co3O4 and Co3O4-containing composites are put forward.


Subject(s)
Cobalt/chemistry , Electrochemical Techniques , Electrodes , Oxides/chemistry , Electric Capacitance , Nanotubes, Carbon/chemistry , Polymers/chemistry
14.
Materials (Basel) ; 12(9)2019 May 05.
Article in English | MEDLINE | ID: mdl-31060284

ABSTRACT

Electrode materials are crucial for the electrochemical performance of supercapacitors. In view of the high specific surface area, high conductivity of graphene nanosheets and the high pseudocapacitance of polyaniline (PANI), the combination of graphene with PANI has become a research hotspot. In this work, we summarize the recent advance on the synthesis of PANI and graphene/PANI composites, and their application in supercapacitors. The synthesis of PANI is the basis of preparing graphene/PANI composites, so we first introduce the synthesis methods of PANI. Then, the advances of two dimensional (2D) and three dimensional (3D) graphene/PANI composites are summarized according to the inherent feature of graphene. The 2D composites of pristine graphene and functionalized graphene with PANI are introduced separately; furthermore, the 3D composites are classified into three sections, including flexible graphene/PANI composites, graphene framework based composites, and printable graphene/PANI composites. At last, aiming at solving the current challenges of graphene/PANI composites, we put forward some strategies for preparing high performance graphene/PANI composite electrodes.

15.
Adv Mater ; 31(5): e1802822, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30480839

ABSTRACT

Present mobile devices, transportation tools, and renewable energy technologies are more dependent on newly developed battery chemistries than ever before. Intrinsic properties, such as safety, high energy density, and cheapness, are the main objectives of rechargeable batteries that have driven their overall technological progress over the past several decades. Unfortunately, it is extremely hard to achieve all these merits simultaneously at present. Alternatively, exploration of the most suitable batteries to meet the specific requirements of an individual application tends to be a more reasonable and easier choice now and in the near future. Based on this concept, here, a range of promising alternatives to lithium-sulfur batteries that are constructed with non-Li metal anodes (e.g., Na, K, Mg, Ca, and Al) and sulfur cathodes are discussed. The systems governed by these new chemistries offer high versatility in meeting the specific requirements of various applications, which is directly linked with the broad choice in battery chemistries, materials, and systems. Herein, the operating principles, materials, and remaining issues for each targeted battery characteristics are comprehensively reviewed. By doing so, it is hoped that their design strategies are illustrated and light is shed on the future exploration of new metal-sulfur batteries and advanced materials.

16.
Hepatol Res ; 46(11): 1088-1098, 2016 Oct.
Article in English | MEDLINE | ID: mdl-26783741

ABSTRACT

AIM: The survival outcome of patients with unresectable hepatocellular carcinoma (HCC) with portal vein tumor thrombus (PVTT) who received transarterial chemoembolization (TACE) combined with radiotherapy (RT) remains unclear. METHODS: A total of 112 and 735 HCC patients with PVTT undergoing TACE combined with RT and TACE alone, respectively, were evaluated. One hundred and eight pairs of matched patients were selected from each treatment arm by using a propensity score matching (PSM) analysis. RESULTS: Of the whole study population, TACE combined with RT showed significant survival benefits compared with TACE in all patients (median survival, 11.0 vs 4.8 months; P < 0.001), especially in patients with PVTT involving the right/left portal vein (median survival, 12.5 vs 5.2 months; P < 0.001) and main portal vein trunk (median survival, 8.9 vs 4.3 months; P < 0.001). After one-to-one PSM, 108 pairs of matched patients were selected for further analysis. In the propensity model, the median survival time was 10.9 versus 4.1 months (P < 0.001) in all patients, 12.5 versus 4.4 months (P = 0.002) in patients with PVTT involving the right/left portal vein and 8.9 versus 4.0 months (P < 0.001) in patients with PVTT involving the main portal vein trunk. The treatment, maximum lesion diameter and main trunk PVTT were the independent prognostic factors for survival at uni- and multivariate analysis. CONCLUSION: TACE combined with RT provides a significantly better survival outcome than TACE for unresectable HCC patients with PVTT, especially for patients with PVTT involving the right/left portal vein or main trunk.

17.
Sci Rep ; 5: 17088, 2015 Nov 26.
Article in English | MEDLINE | ID: mdl-26608870

ABSTRACT

Triple-doped (Yb(3+)/Er(3+)/Tm(3+)) KMnF3 nanocubes with uniform sizes of 250 nm were synthesized by a facile hydrothermal route using the oleic acid as the capping agent. It was found that these nanocubes can simultaneously exhibited four-color (blue, green, red and NIR) upconversion emissions under a single 980 nm near-infrared (NIR) laser excitation, which should have potential multicolor in vivo imaging applications. Specifically, the red (660 nm) and NIR (800 nm) peaks, known as two "optical windows" for imaging biological tissues, were strong. The spectral and pump analyses indicated the two-photon processes were responsible for the both red and NIR emissions.

18.
Nanoscale Res Lett ; 7(1): 456, 2012 Aug 13.
Article in English | MEDLINE | ID: mdl-22889045

ABSTRACT

Complicated nano-patterns with linewidth less than 18 nm can be automatically hammered by using atomic force microscopy (AFM) tip in tapping mode with high speed. In this study, the special sample was thin poly(styrene-ethylene/butylenes-styrene) (SEBS) block copolymer film with hexagonal spherical microstructures. An ordinary silicon tip was used as a nano-hammer, and the entire hammering process is controlled by a computer program. Experimental results demonstrate that such structure-tailored thin films enable AFM tip hammering to be performed on their surfaces. Both imprinted and embossed nano-patterns can be generated by using a vibrating tip with a larger tapping load and by using a predefined program to control the route of tip movement as it passes over the sample's surface. Specific details for the fabrication of structure-tailored SEBS film and the theory for auto-hammering patterns were presented in detail.

19.
Small ; 5(4): 477-83, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19197966

ABSTRACT

Nanolithography at low cost and high speed is made possible by using a vibrating AFM tip in tapping-mode as a nanohammer to forge polystyrene-block-poly(ethylene/butylenes)-block-polystyrene triblock copolymer monolayer thin films after annealing to transform their microstructures from as-cast poorly ordered cylinders into well-ordered hexagonal spheres. Annealing is accomplished in cyclohexane vapor, a selective solvent for the majority poly(ethylene/butylenes) block. Experimental results demonstrate that such structure-tailored thin films enable macroscopic AFM tip writing to be performed in their surface; imprinted and embossed patterns can be generated with a sub-20-nm line-width resolution. In addition, it is found that the lithographic patterns generated can be erased within 5 min by thermal annealing at 70 degrees C, and if necessary the erasion process can be expedited by increasing the annealing temperature.


Subject(s)
Microscopy, Atomic Force/methods , Nanotechnology , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...