Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
2.
Front Pharmacol ; 12: 670670, 2021.
Article in English | MEDLINE | ID: mdl-34220508

ABSTRACT

Despite several improvements in the drug development pipeline over the past decade, drug failures due to unexpected adverse effects have rapidly increased at all stages of clinical trials. To improve the success rate of clinical trials, it is necessary to identify potential loser drug candidates that may fail at clinical trials. Therefore, we need to develop reliable models for predicting the outcomes of clinical trials of drug candidates, which have the potential to guide the drug discovery process. In this study, we propose an outer product-based convolutional neural network (OPCNN) model which integrates effectively chemical features of drugs and target-based features. The validation results via 10-fold cross-validations on the dataset used for a data-driven approach PrOCTOR proved that our OPCNN model performs quite well in terms of accuracy, F1-score, Matthews correlation coefficient (MCC), precision, recall, area under the curve (AUC) of the receiver operating characteristic, and area under the precision-recall curve (AUPRC). In particular, the proposed OPCNN model showed the best performance in terms of MCC, which is widely used in biomedicine as a performance metric and is a more reliable statistical measure. Through 10-fold cross-validation experiments, the accuracy of the OPCNN model is as high as 0.9758, F1 score is as high as 0.9868, the MCC reaches 0.8451, the precision is as high as 0.9889, the recall is as high as 0.9893, the AUC is as high as 0.9824, and the AUPRC is as high as 0.9979. The results proved that our OPCNN model shows significantly good prediction performance on outcomes of clinical trials and it can be quite helpful in early drug discovery.

3.
Sci Rep ; 11(1): 4416, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33627791

ABSTRACT

Identifying novel drug-target interactions (DTIs) plays an important role in drug discovery. Most of the computational methods developed for predicting DTIs use binary classification, whose goal is to determine whether or not a drug-target (DT) pair interacts. However, it is more meaningful but also more challenging to predict the binding affinity that describes the strength of the interaction between a DT pair. If the binding affinity is not sufficiently large, such drug may not be useful. Therefore, the methods for predicting DT binding affinities are very valuable. The increase in novel public affinity data available in the DT-related databases enables advanced deep learning techniques to be used to predict binding affinities. In this paper, we propose a similarity-based model that applies 2-dimensional (2D) convolutional neural network (CNN) to the outer products between column vectors of two similarity matrices for the drugs and targets to predict DT binding affinities. To our best knowledge, this is the first application of 2D CNN in similarity-based DT binding affinity prediction. The validation results on multiple public datasets show that the proposed model is an effective approach for DT binding affinity prediction and can be quite helpful in drug development process.

4.
Sci Rep ; 10(1): 18915, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33144610

ABSTRACT

Comet assay is a widely used method, especially in the field of genotoxicity, to quantify and measure DNA damage visually at the level of individual cells with high sensitivity and efficiency. Generally, computer programs are used to analyze comet assay output images following two main steps. First, each comet region must be located and segmented, and next, it is scored using common metrics (e.g., tail length and tail moment). Currently, most studies on comet assay image analysis have adopted hand-crafted features rather than the recent and effective deep learning (DL) methods. In this paper, however, we propose a DL-based baseline method, called DeepComet, for comet segmentation. Furthermore, we created a trainable and testable comet assay image dataset that contains 1037 comet assay images with 8271 manually annotated comet objects. From the comet segmentation test results with the proposed dataset, the DeepComet achieves high average precision (AP), which is an essential metric in image segmentation and detection tasks. A comparative analysis was performed between the DeepComet and the state-of-the-arts automatic comet segmentation programs on the dataset. Besides, we found that the DeepComet records high correlations with a commercial comet analysis tool, which suggests that the DeepComet is suitable for practical application.

5.
Sci Rep ; 10(1): 11158, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32636458

ABSTRACT

The goal of this study was to develop a potential druggable target for lung injury after SABR through the small animal model. Utilising the model, a radiation dose of 70 Gy or 90 Gy was focally (small volume) delivered to the left lung of mice. The highly expressed phosphorylation form of C-Raf was discovered through a protein array experiment, with the protein being extracted from the area of radiated mouse lung tissue, and was confirmed by IHC and western blot. C-Raf activation, along with morphological change and EMT (Epithelial to Mesenchymal Transition) marker expression, was observed after radiation to the mouse type II alveolar cell line MLE-12. C-Raf inhibitor GW5074 was able to reverse the EMT in cells effectively, and was found to be dependent on Twist1 expression. In the animal experiment, pretreatment of GW5074 alleviated EMT and lung injury after 70 Gy radiation was focally delivered to the lung of mice. Conclusively, these results demonstrate that C-Raf inhibitor GW5074 inhibits high-dose small-volume radiation-induced EMT via the C-Raf/Twist1 signalling pathway in mice. Therefore, pharmacological C-Raf inhibitors may be used effectively as inhibitors of SABR-induced lung fibrosis.


Subject(s)
Epithelial-Mesenchymal Transition/radiation effects , Indoles/pharmacology , Lung/radiation effects , Phenols/pharmacology , Proto-Oncogene Proteins c-raf/metabolism , Radiosurgery , Animals , Blotting, Western , Dose-Response Relationship, Radiation , Epithelial-Mesenchymal Transition/drug effects , Lung/drug effects , Lung/physiology , Male , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-raf/antagonists & inhibitors , Radiation Dosage , Radiation Injuries, Experimental/drug therapy , Radiation Injuries, Experimental/prevention & control , Radiosurgery/adverse effects , Radiosurgery/methods
6.
Radiat Oncol ; 14(1): 41, 2019 Mar 11.
Article in English | MEDLINE | ID: mdl-30866972

ABSTRACT

BACKGROUND: Radiotherapy plays a major role in the management of brain metastases. This study aimed to identify the subset of patients with multiple brain metastases who may not benefit from whole brain irradiation (WBI) due to a short survival time regardless of treatment. METHODS: We analyzed a total of 339 patient records with brain metastases treated with whole brain radiotherapy from January 2009 to January 2016. External beam radiotherapy techniques were used to deliver 33 Gy in 11 fractions (4 fractions per week) to the whole brain. Eight clinical factors with a potential influence on survival were investigated using the Kaplan-Meier method. All factors with a P < 0.05 in univariate analysis were entered into multivariate analysis using Cox regression. RESULTS: In the present series of 339 patients, median survival time was 2.5 months (M; range, 0-61 months). Four risk factors Karnofsky Performance Score (KPS) < 70, age > 70, > 3 of metastases intracranial, uncontrolled primary tumor) were identified that were significant and negatively correlated with median survival time. Patients with no risk factors had a median survival of 4.7 M; one risk factor, 2.5 M; two risk factors, 2.3 M; and 3-4 risk factors, 0.4 M (p < 0.00001). CONCLUSIONS: Patients with identified risk factors might have a negatively impacted overall survival after WBI. Accordingly, patients who will not benefit from WBI can be easily predicted if they have 3-4 of these risk factors.


Subject(s)
Brain Neoplasms/radiotherapy , Cranial Irradiation/methods , Lung Neoplasms/radiotherapy , Adult , Aged , Aged, 80 and over , Brain Neoplasms/secondary , Female , Humans , Karnofsky Performance Status , Lung Neoplasms/pathology , Male , Middle Aged , Prognosis , Radiotherapy Dosage , Retrospective Studies , Risk Factors , Survival Rate
7.
Acta Pharmaceutica Sinica ; (12): 22-28, 2019.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-778664

ABSTRACT

The poor solubility of cyclosporine A (CsA) in water limits its oral absorption. We prepared CsA/ Soluplus/SDS complex, which can form CsA/Soluplus/SDS supersaturated micelles (CSS-SM) after hydration. Then, We further prepared CSS-SM osmotic pump tablets (CSS-SM-T). CSS-SM had a particle size of 156 nm, where in encapsulation efficiency and drug loading efficiency of CsA were 89.0% and 17.5%, respectively. CSS-SM-T achieved zero-level drug release in vitro. Pharmacokinetic data from Beagle dogs (all animal experiments were conducted under the guidelines approved by the Institutional Animal Care and Use Committee of the Shanghai Institute of Materia Medica, Chinese Academy of Sciences) indicated that CsA in the ordinary osmotic pump tablets was hardly absorbed after orally administered; despite slightly lower bioavailability [relative bioavailability: (85.1 ± 47.4) %] than that of Sandimmum Neoral, CSS-SM-T displayed lower fluctuations in CsA plasma concentration and obvious sustained-release characteristics in vivo, implying lower toxicity. Therefore, CSS-SM-T provides a new research idea for the design and development of oral sustained- and controlled-release preparations of poorly water-soluble drugs.

8.
Endocrinol Metab (Seoul) ; 31(2): 328-35, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27077216

ABSTRACT

BACKGROUND: Resveratrol (RSV) is a polyphenolic phytoalexin that has many effects on metabolic diseases such as diabetes and obesity. Given the importance of brown adipose tissue (BAT) for energy expenditure, we investigated the effects of RSV on brown adipocytes. METHODS: For the in vitro study, interscapular BAT was isolated from 7-week-old male Sprague Dawley rats. For the in vivo study, 7-week-old male Otsuka Long Evans Tokushima Fatty (OLETF) rats were divided into four groups and treated for 27 weeks with: standard diet (SD); SD+RSV (10 mg/kg body weight, daily); high fat diet (HFD); HFD+RSV. RSV was provided via oral gavage once daily during the in vivo experiments. RESULTS: RSV treatment of primary cultured brown preadipocytes promoted mitochondrial activity, along with over-expression of estrogen receptor α (ER-α). In OLETF rats, both HFD and RSV treatment increased the weight of BAT and the differentiation of BAT. However, only RSV increased the mitochondrial activity and ER-α expression of BAT in the HFD-fed group. Finally, RSV improved the insulin sensitivity of OLETF rats by increasing the mitochondrial activity of BAT, despite having no effects on white adipocytes and muscles in either diet group. CONCLUSION: RSV could improve insulin resistance, which might be associated with mitochondrial activity of brown adipocyte. Further studies evaluating the activity of RSV for both the differentiation and mitochondrial activity of BAT could be helpful in investigating the effects of RSV on metabolic parameters.

9.
Lung ; 194(1): 81-90, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26563330

ABSTRACT

PURPOSE: We aimed to determine the time, dose, and volume responses in a mouse pulmonary injury model following ablative dose focal irradiation (ADFIR) in order to better understand normal lung injury. METHODS AND MATERIALS: ADFIR was administered to the left lung of mice using a small animal micro-irradiator. Histopathological evaluation and micro-computed tomography (micro-CT) analyses were performed at 1, 2, 6, and 12 weeks after irradiation. Dose responses were tested at doses of 0-90 Gy in C57BL/6 and C3H/HeJCr mice at 6 weeks after irradiation. The volume effect was evaluated with 1-, 3-, and 5-mm diameter collimators at 1-4 weeks after 90-Gy irradiation. RESULTS: ADFIR caused gross local lung injury of the inflated lung in just 1 week, with extensive hyaline material visible in the irradiated area. The fibrosing process was initiated as early as 2 weeks after irradiation. C3H and C57 mice did not show significant differences in dose response. Six weeks after irradiation, the radiation dose-response curve had a sigmoidal shape, where the lag, log, and stationary phases occurred at <40, 50-70, and >80 Gy, respectively. ADFIR induced substantial volume-dependent structural and functional damage to the lungs, and the volume changes of lung consolidation on micro-CT correlated inversely with lung fibrosis over time. CONCLUSIONS: We determined the time, dose, and volume responses in our established small animal model, and found that lung injury was substantially accelerated and phenotypically different from that of prior studies using non-ablative hemi-thorax and complete thorax irradiation schemes.


Subject(s)
Acute Lung Injury/pathology , Lung/pathology , Radiation Injuries, Experimental/pathology , Acute Lung Injury/diagnostic imaging , Animals , Dose-Response Relationship, Radiation , Female , Fibrosis , Lung/diagnostic imaging , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Organ Size , Radiation Dosage , Radiation Injuries, Experimental/diagnostic imaging , Radiosurgery/adverse effects , Time Factors , X-Ray Microtomography
10.
Huan Jing Ke Xue ; 36(1): 295-300, 2015 Jan.
Article in Chinese | MEDLINE | ID: mdl-25898678

ABSTRACT

With the potential risks for the environment and human health, the concentration and distribution characteristics of platinum group element(PGEs) in road dust in Xiamen city were investigated. Road dust samples were collected from the traffic trunk road, tunnel, tourism area, and industrial area of Xiamen on October 2012. The samples were digested with aqua regia in a microwave assisted digestion system under high pressure condition, separated and purified with cation exchange resin( Dowex AG50W-X8), and the resulting solutions were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The results showed that the average concentrations(range) of Pd, Pt and Rh in road dust were 246.82 (58.68-765.52) ng x g(-1), 95.45 (42.14-371.36) ng x g(-1) and 51.76 (21.04-119.72) ng x g(-1), respectively, which were two orders of magnitude higher than the background values. Compared with other cities worldwide, the concentrations of Pd, Pt and Rh in road dust in Xiamen were at higher levels. Theconcentrations of PGEs for different functional areas were listed in the following order: tunnel > urban district > industrial area > tourism area, which indicated that their spatial distributions were mainly affected by the traffic intensity. Correlation analysis results showed that concentration of Pd in the urban traffic artery was significantly correlated with Rh, while Pt was not so correlated with Pd and Rh, suggesting that other sources contributed to PGEs in road dust in addition to the vehicle emission. Although motor vehicle traveling was banned in tourist area, the concentration of PGEs was still at a high level. Some of them might originate from the road dust in surrounding area by atmosphere diffusion.


Subject(s)
Dust/analysis , Environmental Monitoring , Environmental Pollution/analysis , Platinum/analysis , Cities , Vehicle Emissions
11.
Clin Cancer Res ; 21(16): 3716-26, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-25910951

ABSTRACT

PURPOSE: Radiation-induced pulmonary fibrosis (RIPF) is a late side effect of thoracic radiotherapy. The purpose of our study was to gain further insight into the development of RIPF. EXPERIMENTAL DESIGN/RESULTS: Here, we observed that irradiation of mouse lungs induced collagen deposition, particularly around blood vessels, in the early phase of RIPF. Such deposition subsequently became evident throughout the irradiated tissues. Accompanied by the collagen deposition, vascular EndMT (endothelial-to-mesenchymal transition) began to develop in the early phase of RIPF, before the appearance of EMT (epithelial-to-mesenchymal transition) of alveolar epithelial (AE) II cells in the substantive fibrotic phase. Concomitant with the EndMT, we detected vascular endothelial cell (EC)-specific hypoxic damage in the irradiated lung tissues. In human pulmonary artery endothelial cells (HPAEC), the radiation-induced EndMT via activation of TGFß-R1/Smad signaling was dependent on HIF1α expression. A novel HIF1α inhibitor, 2-methoxyestradiol (2-ME), inhibited the irradiation-induced EndMT via downregulation of HIF1α-dependent Smad signaling. In vivo, 2-ME inhibited the vascular EndMT, and decreased the collagen deposition associated with RIPF. Furthermore, HIF1α-related EndMT was observed also in human RIPF tissues. CONCLUSIONS: We provide the first evidence that an EndMT occurs in RIPF development and that the EndMT may be effectively inhibited by modulating vascular EC-specific hypoxic damage.


Subject(s)
Epithelial-Mesenchymal Transition/genetics , Lung/drug effects , Pulmonary Fibrosis/genetics , Radiation Pneumonitis/genetics , 2-Methoxyestradiol , Animals , Blood Vessels/pathology , Blood Vessels/radiation effects , Cell Hypoxia/radiation effects , Collagen/metabolism , Endothelial Cells/drug effects , Endothelial Cells/radiation effects , Estradiol/administration & dosage , Estradiol/analogs & derivatives , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Lung/pathology , Lung/radiation effects , Mice , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Radiation Pneumonitis/drug therapy , Radiation Pneumonitis/pathology , Radiotherapy/adverse effects
12.
Lung ; 193(3): 409-19, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25749666

ABSTRACT

INTRODUCTION: Stereotactic ablative radiotherapy is a newly emerging radiotherapy treatment method that, compared with conventionally fractionated radiation therapy (CFRT), allows an ablative dose of radiation to be delivered to a confined area around a tumor. The aim of the present study was to investigate the changes of various cytokines that may be involved in ablative radiation-induced lung injury in vitro and in vivo. METHODS: In the in vivo study, ablative-dose radiation was delivered to a small volume of the left lung of C3H/HeJCr mice using a small-animal irradiator. The levels of 24 cytokines in the peripheral blood were tested at several time points after irradiation. For the in vitro study, three mouse cell types (type II pneumocytes, alveolar macrophages, and fibroblasts) known to play important roles in radiation-induced pneumonitis and lung fibrosis were analyzed using a co-culture system. RESULTS: In the in vivo study, we found obvious patterns of serum cytokine changes depending on the volume of tissue irradiated (2-mm vs. 3.5-mm collimator). Only the levels of 3 cytokines increased with the 2-mm collimator at the acute phase (1-2 weeks after irradiation), while the majority of cytokines were elevated with the 3.5-mm collimator. In the in vitro co-culture system, after the cells were given an ablative dose of irradiation, the levels of five cytokines (GM-CSF, G-CSF, IL-6, MCP-1, and KC) increased significantly in a dose-dependent manner. CONCLUSIONS: The cytokine levels in our radiation-induced lung injury model showed specific changes, both in vivo and in vitro. These results imply that biological studies related to ablative-dose small-volume irradiation should be investigated using the corresponding experimental models rather than on those simulating large-volume CFRT.


Subject(s)
Ablation Techniques , Cytokines/blood , Lung/radiation effects , Radiation Pneumonitis/blood , Radiosurgery , Alveolar Epithelial Cells/immunology , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/radiation effects , Animals , Coculture Techniques , Cytokines/genetics , Cytokines/immunology , Disease Models, Animal , Fibroblasts/immunology , Fibroblasts/metabolism , Fibroblasts/radiation effects , Gene Expression Regulation , Lung/immunology , Lung/metabolism , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/radiation effects , Mice , Mice, Inbred C3H , NIH 3T3 Cells , Radiation Dosage , Radiation Pneumonitis/etiology , Radiation Pneumonitis/genetics , Radiation Pneumonitis/immunology , Time Factors
13.
Radiat Res ; 182(1): 83-91, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24937781

ABSTRACT

In a previous study, we established an image-guided small-animal micro-irradiation system mimicking clinical stereotactic body radiotherapy (SBRT). The goal of this study was to develop a rodent model of acute phase lung injury after ablative irradiation. A radiation dose of 90 Gy was focally delivered to the left lung of C57BL/6 mice using a small animal stereotactic irradiator. At days 1, 3, 5, 7, 9, 11 and 14 after irradiation, the lungs were perfused with formalin for fixation and paraffin sections were stained with hematoxylin and eosin (H&E) and Masson's trichrome. At days 7 and 14 after irradiation, micro-computed tomography (CT) images of the lung were taken and lung functional measurements were performed with a flexiVent™ system. Gross morphological injury was evident 9 days after irradiation of normal lung tissues and dynamic sequential events occurring during the acute phase were validated by histopathological analysis. CT images of the mouse lungs indicated partial obstruction located in the peripheral area of the left lung. Significant alteration in inspiratory capacity and tissue damping were detected on day 14 after irradiation. An animal model of radiation-induced lung injury (RILI) in the acute phase reflecting clinical stereotactic body radiotherapy was established and validated with histopathological and functional analysis. This model enhances our understanding of the dynamic sequential events occurring in the acute phase of radiation-induced lung injury induced by ablative dose focal volume irradiation.


Subject(s)
Ablation Techniques/adverse effects , Acute Lung Injury/etiology , Radiation Injuries, Experimental/etiology , Radiosurgery/adverse effects , Acute Lung Injury/diagnostic imaging , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Animals , Collagen/metabolism , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Neoplasms/surgery , Radiation Injuries, Experimental/diagnostic imaging , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/pathology , X-Ray Microtomography
14.
J Radiat Res ; 55(4): 648-57, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24556815

ABSTRACT

Given the tremendous potential of stereotactic body radiotherapy (SBRT), investigations of the underlying radiobiology associated with SBRT-induced normal tissue injury are of paramount importance. This study was designed to develop an animal model that simulates centrally and peripherally located clinical SBRT-induced lung injuries. A 90-Gy irradiation dose was focally delivered to the central and peripheral areas of the left mouse lung with an image-guided small-animal irradiation system. At 1, 2 and 4 weeks after irradiation, micro-computed tomography (micro-CT) images of the lung were taken. Lung function measurements were performed with the Flexivent® system (SCIREQ©, Montreal, Canada). For the histopathological analysis, the lungs were fixed by perfusing with formalin, and paraffin sections were stained with hematoxylin and eosin and Masson's Trichrome. Gross inspection clearly indicated local lung injury confined to the central and peripheral areas of the left lung. Typical histopathological alterations corresponding to clinical manifestations were observed. The micro-CT analysis results appeared to correlate with the histopathological findings. Mouse lung tissue damping increased dramatically at central settings, compared with that at the control or peripheral settings. An animal model to simulate clinical SBRT-induced central and peripheral lung injuries was developed and validated with histopathological, radiological and functional analyses. This model increases our understanding of SBRT-induced central and peripheral lung injuries and will help to improve radiation therapy in the future.


Subject(s)
Lung Injury/etiology , Radiation Injuries, Experimental/etiology , Radiosurgery/adverse effects , Animals , Disease Models, Animal , Lung Injury/diagnostic imaging , Lung Injury/pathology , Male , Mice , Mice, Inbred C57BL , Radiation Injuries, Experimental/diagnostic imaging , Radiation Injuries, Experimental/pathology , Radiosurgery/instrumentation , Respiratory Mechanics/radiation effects , Time Factors , X-Ray Microtomography
15.
J Radiat Res ; 54(5): 823-31, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23449639

ABSTRACT

A porcine skin model was developed to characterize the dose-dependent response to high-dose radiation. The dorsal skin of a mini pig was divided into four paraspinal sections, with 11 small irradiation fields (2 cm × 2 cm) in each section, and a single fraction of 15, 30, 50 or 75 Gy was delivered to each section using a 6 MeV electron beam. A spectrophotometer measured gross skin changes, and a biopsy for each radiation dose was performed in the 1st, 2nd, 4th, 6th and 9th weeks for histology, immunostaining with anti-CD31, and western blotting with IL-6 and TGF-ß1 to determine the degree of skin damage. After a 4-week latency period, erythema and dry desquamation, moist desquamation, and ulceration appeared at 4, 6 and 9 weeks, respectively. Gross skin toxicity was more pronounced, occurred early and continued to progress with irradiation >50 Gy, whereas complete healing was observed 12 weeks after 15 Gy. Spectrophotometry showed erythema indices rapidly increased during the first 4 weeks after irradiation. The number of eosinophils began rising sharply at 4 weeks and normalized after reaching peaks at 7-8 weeks. Microvessel density showed a biphasic pattern with a transient peak at 1 week, a nadir at 4-6 weeks, and maximum recovery at 9 weeks. Increase in the levels of IL-6 and TGF-ß1 was detected soon after irradiation. Most of these parameters indicated complete healing of the skin 12 weeks after 15 Gy. Our porcine skin model provides an effective platform for studying high-dose radiation-induced skin injury, in particular histologic and molecular changes, during the early latency period.


Subject(s)
Disease Models, Animal , Radiodermatitis/etiology , Radiodermatitis/pathology , Radiodermatitis/physiopathology , Skin/pathology , Skin/physiopathology , Skin/radiation effects , Animals , Dose-Response Relationship, Radiation , Humans , Radiation Injuries , Swine , Swine, Miniature
16.
Article in English | MEDLINE | ID: mdl-23401716

ABSTRACT

Danshen is a traditional Chinese medicine with many beneficial effects on cardiovascular diseases. The aim of this study was to evaluate the mechanisms responsible for the antiatherogenic effect of water soluble Danshen extracts (DEs). Rat vascular smooth muscle cells (VSMCs) and human umbilical vein endothelial cells (HUVECs) were treated with DE. To evaluate the effects of DE in vivo, carotid balloon injury and tail vein thrombosis were induced in Sprague-Dawley (SD) rats and iliac artery stent was induced in New Zealand white rabbits. The inhibitory action of DE on platelet aggregation was confirmed with an impedance aggregometer. DE inhibited the production of reactive oxygen species, and the migration and proliferation of platelet-derived growth factor-BB stimulated VSMCs. Furthermore, DE prevented inflammation and apoptosis in HUVECs. Both effects of DE were reconfirmed in both rat models. DE treatment attenuated platelet aggregation in both in vivo and ex vivo conditions. Pretreatment with DE prevented tail vein thrombosis, which is normally induced by κ-carrageenan injection. Lastly, DE-treated rabbits showed decreased in-stent restenosis of stented iliac arteries. These results suggest that water soluble DE modulates key atherogenic events in VSMCs, endothelial cells, and platelets in both in vitro and in vivo conditions.

17.
Cancer Lett ; 314(1): 34-40, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-21974806

ABSTRACT

Akt-dependent FOXO3a cytoplasmic translocation is an important tumorigenic mechanism for escaping from apoptosis in cancer cells. In the present study, we examined whether non-phosphorylatable FOXO3a can inhibit cell growth of various follicular thyroid carcinoma (FTC) cell lines. Adenovirus carrying the FOXO3a-triple mutant (TM) sequence including point mutations at three Akt phosphorylation sites (Ad-FOXO3a-TM) was generated and transduced to the cells to mimic inhibition of Akt/FOXO3a signal. Transduction of Ad-FOXO3a-TM to FTC133 cells induced cell cycle arrest and apoptosis. Injection of Ad-FOXO3a-TM suppressed the growth of xenograft tumors in athymic mice. Consequently, our results indicate that gene therapy based on Ad-FOXO3a-TM has therapeutic potential for FTC.


Subject(s)
Forkhead Transcription Factors/genetics , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Thyroid Neoplasms/therapy , Adenocarcinoma, Follicular , Adenoviridae/genetics , Apoptosis , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Forkhead Box Protein O3 , Genetic Therapy , Humans , Signal Transduction/physiology , Thyroid Neoplasms/pathology
18.
Clin Invest Med ; 32(5): E368-75, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19796578

ABSTRACT

PURPOSE: To determine the cellular and molecular mechanism of cytotoxicity induced by Haishengsu (HSS), nature extract from Tegillarca granosa, toward human ovarian cancer cell lines SKOV-3 and OVCAR-3. METHODS: The cytotoxic effects of HSS on two ovarian cancer cell lines were tested by XTT assay. Cell apoptosis and cell cycle arrest induced by HSS were demonstrated by DNA ladder assay and flow cytometric analysis, respectively. RT-PCR or flow cytometric analysis was used to investigate the expression of bcl-2, caspase-3, p53, beta-catenin, E-cadherin, CD24, and CD44. RESULTS: Continuous exposure to HSS for 48 h produced cytotoxic effects on both cell lines in a concentration dependent manner, which was accompanied by apoptosis and cell cycle arrest. Apoptosis associated gene bcl-2 and caspase-3, tumor metastasis associated gene ?-catenin, but not E-cadherin, and CD24, but not CD44, were involved in the effect of growth inhibition induced by HSS. Although p53 mediated apoptosis induced by HSS in OVCAR-3 cells, it was not required in SKOV-3 cells. CONCLUSION: HSS has a potential cytotoxic effect on human ovarian cancer cells, which was mediated by multiple signal molecules including bcl-2, caspase-3, beta-catenin, and CD24. These findings will provide a theoretical basis for HSS's potential clinical application as a novel marine anti-cancer agent.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Arcidae/chemistry , Animals , Antineoplastic Agents/chemistry , Apoptosis/drug effects , CD24 Antigen/metabolism , Caspase 3/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Female , Flow Cytometry , Gene Expression Regulation, Neoplastic/drug effects , Humans , Hyaluronan Receptors/metabolism , Ovarian Neoplasms/drug therapy , Proto-Oncogene Proteins c-bcl-2/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tumor Suppressor Protein p53/metabolism , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL