Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 431
Filter
1.
Asian J Androl ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38738948

ABSTRACT

ABSTRACT: For sperm cryopreservation, the conventional method, which requires glycerol, has been used for a long time. In addition, the permeable cryoprotectant-free vitrification method has been continuously studied. Although the differences of cryopreservation effects between the two methods have being studied, differences in microRNA (miRNA) profiles between them remain unclear. In this study, we investigated the differences in miRNA expression profiles among conventional freezing sperm, droplet vitrification freezing sperm and fresh human sperm. We also analyzed the differences between these methods in terms of differentially expressed miRNAs (DEmiRs) related to early embryonic development and paternal epigenetics. Our results showed no significant differences between the cryopreservation methods in terms of sperm motility ratio, plasma membrane integrity, DNA integrity, mitochondrial membrane potential, acrosome integrity, and ultrastructural damage. However, sperm miRNA-sequencing showed differences between the two methods in terms of the numbers of DEmiRs (28 and 19 with vitrification using a nonpermeable cryoprotectant and the conventional method, respectively) in postthaw and fresh sperm specimens. DEmiRs related to early embryonic development and paternal epigenetics mainly included common DEmiRs between the groups. Our results showed that the differences between conventional freezing and droplet vitrification were minimal in terms of miRNA expression related to embryonic development and epigenetics. Changes in sperm miRNA expression due to freezing are not always detrimental to embryonic development. This study compared differences in miRNA expression profiles before and after cryopreservation between cryopreservation by conventional and vitrification methods. It offers a new perspective to evaluate various methods of sperm cryopreservation.

2.
Nanomaterials (Basel) ; 14(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38668226

ABSTRACT

The van der Waals epitaxy of wafer-scale GaN on 2D MoS2 and the integration of GaN/MoS2 heterostructures were investigated in this report. GaN films have been successfully grown on 2D MoS2 layers using three different Ga fluxes via a plasma-assisted molecular beam epitaxy (PA-MBE) system. The substrate for the growth was a few-layer 2D MoS2 deposited on sapphire using chemical vapor deposition (CVD). Three different Ga fluxes were provided by the gallium source of the K-cell at temperatures of 825, 875, and 925 °C, respectively. After the growth, RHEED, HR-XRD, and TEM were conducted to study the crystal structure of GaN films. The surface morphology was obtained using FE-SEM and AFM. Chemical composition was confirmed by XPS and EDS. Raman and PL spectra were carried out to investigate the optical properties of GaN films. According to the characterizations of GaN films, the van der Waals epitaxial growth mechanism of GaN films changed from 3D to 2D with the increase in Ga flux, provided by higher temperatures of the K-cell. GaN films grown at 750 °C for 3 h with a K-cell temperature of 925 °C demonstrated the greatest crystal quality, chemical composition, and optical properties. The heterostructure of 3D GaN on 2D MoS2 was integrated successfully using the low-temperature PA-MBE technique, which could be applied to novel electronics and optoelectronics.

3.
Foods ; 13(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38672868

ABSTRACT

A new form of plant-based meat, known as 'high-moisture meat analogs' (HMMAs), is captivating the market because of its ability to mimic fresh, animal muscle meat. Utilizing pea protein in the formulation of HMMAs provides unique labeling opportunities, as peas are both "non-GMO" and low allergen. However, many of the commercial pea protein isolate (PPI) types differ in functionality, causing variation in product quality. Additionally, PPI inclusion has a major impact on final product texture. To understand the collective impact of these variables, two studies were completed. The first study compared four PPI types while the second study assessed differences in PPI inclusion amount (30-60%). Both studies were performed on a Wenger TX-52 extruder, equipped with a long-barrel cooling die. Rapid-visco analysis (RVA) and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) indicated differences in protein solubility among the different PPI types. In general, lower protein solubility led to better product quality, based on visual evaluation. Cutting strength and texture profile analysis showed increasing PPI inclusion from 30-60% led to significantly higher product hardness (14,160-16,885 g) and toughness (36,690-46,195 g. s). PPI4 led to lower product toughness (26,110 and 33,725 g. s), compared to the other PPIs (44,620-60,965 g. s). Heat gelling capacity of PPI4 was also highest among PPI types, by way of least gelation concentration (LGC) and RVA. When compared against animal meat, using more PPI (50-60%) better mimicked the overall texture and firmness of beef steak and pork chops, while less PPI better represented a softer product like chicken breast. In summary, protein content and also functionality such as cold water solubility and heat gelation dictated texturization and final product quality. High cold water solubility and poor heat gelation properties led to excessive protein cross linking and thicker yet less laminated shell or surface layer. This led to lower cutting firmness and toughness, and less than desirable product texture as compared to animal meat benchmarks. On the other hand, pea proteins with less cold water solubility and higher propensity for heat gelation led to products with more laminated surface layer, and higher cutting test and texture profile analysis response. These relationships will be useful for plant-based meat manufacturers to better tailor their products and choice of ingredients.

4.
Heliyon ; 10(5): e27325, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38449611

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease throughout the world. Hepatocellular carcinoma (HCC) and liver cirrhosis can result from nonalcoholic steatohepatitis (NASH), the severe stage of NAFLD progression. By some estimates, NAFLD affects almost one-third of the world's population, which is completely new and serious public health issue. Unfortunately, NAFLD is diagnosed by exclusion, and the gold standard for identifying NAFLD/NASH and reliably measuring liver fibrosis remains liver biopsy, which is an invasive, costly, time-consuming procedure and involves variable inter-observer diagnosis. With the progress of omics and imaging techniques, numerous non-invasive serological assays have been generated and developed. On the basis of these developments, non-invasive biomarkers and imaging techniques have been combined to increase diagnostic accuracy. This review provides information for the diagnosis and assessment of NAFLD/NASH in clinical practice going forward and may assist the clinician in making an early and accurate diagnosis and in proposing a cost-effective patient surveillance. We discuss newly identified and validated non-invasive diagnostic methods from biopsy-confirmed NAFLD patient studies and their implementation in clinical practice, encompassing NAFLD/NASH diagnosis and differentiation, fibrosis assessment, and disease progression monitoring. A series of tests, including 20-carboxy arachidonic acid (20-COOH AA) and 13,14-dihydro-15-keto prostaglandin D2 (dhk PGD2), were found to be potentially the most accurate non-invasive tests for diagnosing NAFLD. Additionally, the Three-dimensional magnetic resonance imaging (3D-MRE), combination of the FM-fibro index and Liver stiffness measurement (FM-fibro LSM index) and the machine learning algorithm (MLA) tests are more accurate than other tests in assessing liver fibrosis. However, it is essential to use bigger cohort studies to corroborate a number of non-invasive diagnostic tests with extremely elevated diagnostic values.

5.
Int J Womens Health ; 16: 401-410, 2024.
Article in English | MEDLINE | ID: mdl-38463686

ABSTRACT

Purpose: To determine the disparities in survival outcomes between stage IIB-IVA cervical squamous cell carcinoma (SCC) and adenocarcinoma (AC) treated with chemoradiotherapy. Methods: Patients diagnosed between 2004 and 2015 were retrospectively included from the Surveillance, Epidemiology, and End Results databases. Propensity score matching (PSM) was used in this study. The primary endpoints were cervical cancer-specific survival (CCSS) and overall survival (OS). Results: A total of 2752 patients were identified, including 87.5% (n=2408) were SCC and 12.5% (n=344) were AC. Patients with AC had inferior 5-year CCSS (67.5% vs 54.8%, P<0.001) and OS (58.4% vs 47.2%, P<0.001) compared to those with the SCC subtype. The hazard curve of cervical cancer-related death in AC peaked at 2 years (19%) and still small peaks in the 7 and 11 years of follow-up. Regarding SCC, cervical cancer-related deaths peaked at 2 years (15%) and the hazard rate was 2.0% during the six years of follow-up. The multivariate Cox regression analyses indicated that histology was an independent prognostic factor associated with survival outcomes. Patients with AC had significantly poor CCSS (P<0.001) and OS (P<0.001). Similar results were found after PSM. Conclusion: Our study demonstrates a significantly better prognosis for cervical SCC patients compared to those with cervical AC undergoing chemoradiotherapy. These results highlight the importance of histological subtyping in predicting treatment outcomes and tailoring therapeutic strategies.

6.
Ann Hepatol ; 29(2): 101281, 2024.
Article in English | MEDLINE | ID: mdl-38135250

ABSTRACT

INTRODUCTION AND OBJECTIVES: In a recent development, a cohort of hepatologists has proposed altering the nomenclature of non-alcoholic fatty liver disease (NAFLD) to metabolic-associated steatotic liver disease (MASLD), accompanied by modified diagnostic criteria. Our objective was to investigate the effect of the revised definition on identifying significant hepatic fibrosis. PATIENTS AND METHODS: From Jan 2009 to Dec 2022, a total of 428 patients with biopsy-proven hepatic steatosis were diagnosed with NAFLD. Patients were classified into subgroups according to MASLD and Cryptogenic-SLD diagnostic criteria. The clinical pathological features were compared between these two groups. Risk factors for significant fibrosis were analysed in the MASLD group. In total, 329 (76.9 %) patients were diagnosed with MASLD, and 99 (23.1 %) were diagnosed with Cryptogenic-SLD. RESULTS: Those with MASLD exhibited a higher degree of disease severity regarding histology features than Cryptogenic-SLD. The prevalence of significant fibrosis increased from 13 % to 26.6 % for one and two criteria present to 42.5 % for meeting three or more cardiometabolic risk factor (CMRF) criteria (p = 0.001). ALB (aOR:0.94,95 %CI:0.90-1.00; p = 0.030), lower levels of PLT (aOR:0.99, 95 %CI:0.99-1.00; p < 0.001), and more metabolic comorbidities (aOR:1.42,95 %CI:1.14-1.78; p = 0.012) were independent risk factors of significant fibrosis in MASLD. CONCLUSIONS: The new nomenclature of MASLD and SLD is more applicable to identifying significant fibrosis than NAFLD. Patients with three or more cardiometabolic risk factors are at higher risk of fibrosis.


Subject(s)
Metabolic Diseases , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/epidemiology , Metabolic Diseases/diagnosis , Metabolic Diseases/epidemiology , Comorbidity , Risk Factors , Liver Cirrhosis/diagnosis , Liver Cirrhosis/epidemiology
7.
Heliyon ; 9(11): e22302, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38053876

ABSTRACT

Acute respiratory tract infections (ARTI) are caused by respiratory pathogens and range from asymptomatic infections to severe respiratory diseases. These diseases can be life threatening with high morbidity and mortality worldwide. Under the pandemic of coronavirus disease 2019 (COVID-19), little has been reported about the pathogen etiologies and epidemiology of patients suffering from ARTI of all age in Xiamen. Region-specific surveillance in individuals with ARTI of all ages was performed in Xiamen from January 2020 to October 2022. Here, we observed the epidemiological characteristics of thirteen pathogens within ARTI patients and further revealed the difference of that between upper respiratory tract infections (URTI) and lower respiratory tract infections (LRTI). In total 56.36 % (2358/4184) of the ARTI patients were positive for at least one respiratory pathogen. Rhinovirus (RVs, 29.22 %), influenza A (FluA, 19.59 %), respiratory syncytial virus (RSV, 18.36 %), metapneumovirus (MPV, 13.91 %), and adenovirus (ADV, 10.31 %) were the five leading respiratory pathogens. Respiratory pathogens displayed age- and season-specific patterns, even between URTI and LRTI. Compared with other groups, a higher proportion of FluA (52.17 % and 68.75 %, respectively) infection was found in the adult group and the elder group, while the lower proportion of RVs (14.11 % and 11.11 %) infection was also observed in them. Although ARTI cases circulated throughout the year, RVs, FluB, and BoV peaked in autumn, and FluA circulated more in summer. Besides, the co-infectious rate was 8.7 % with the most common for RVs. Logistic regression analyses revealed the correlations between respiratory pathogens and disease types. These results are essential for replenishing epidemiological characteristics of common respiratory pathogens that caused ARTI in Xiamen during the epidemic of COVID-19, and a better understanding of it might optimize the local prevention and clinical control.

8.
Phys Chem Chem Phys ; 25(37): 25465-25479, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37712300

ABSTRACT

Developing non-fullerene acceptors (NFAs) by modifying the backbone, side chains and end groups is the most important strategy to improve the power conversion efficiency of organic solar cells (OSCs). Among numerous developed NFAs, Y6 and its derivatives are famous NFAs in the OSC field due to their good performance. Herein, in order to understand the mechanism of tuning the photovoltaic performance by modifying the Y6's center backbone, π-spacer and side-chains, we selected the PM6:Y6 OSC as a reference and systematically studied PM6:AQx-2, PM6:Y6-T, PM6:Y6-2T, PM6:Y6-O, PM6:Y6-1O and PM6:Y6-2O OSC systems based on extensive quantum chemistry calculations. The results indicate that introducing quinoxaline to substitute thiadiazole in the backbone induces a blue-shift of absorption spectra, reduces the charge transfer (CT) distance (Δd) and average electrostatic potential (ESP), and increases the singlet-triplet energy gap (ΔEST), CT excitation energy and the number of CT states in low-lying excitations. Inserting thienyl and dithiophenyl as π spacers generates a red-shift of absorption spectra, enlarges Δd and average ESP, and reduces ΔEST and the number of CT states. Introducing furo[3,2-b]furan for substituting one thieno[3,2-b]thiophene unit in the Y6's backbone causes a red-shift of absorption spectra and increases ΔEST, Δd and average ESP as well as CT excitation energy. Introducing alkoxyl as a side chain results in a blue-shift of absorption spectra, and increases ΔEST, Δd, average ESP, CT excitation energy and the number of CT states. The rate constants calculated using Marcus theory suggest that all the molecular modifications of Y6 reduce the exciton dissociation and charge recombination rates at the heterojunction interface, while introducing furo[3,2-b]furan and alkoxyl enlarges CT rates.

9.
Microorganisms ; 11(6)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37375039

ABSTRACT

Rhodococcus sp. strain CH91 is capable of utilizing long-chain n-alkanes as the sole carbon source. Two new genes (alkB1 and alkB2) encoding AlkB-type alkane hydroxylase were predicted by its whole-genome sequence analysis. The purpose of this study was to elucidate the functional role of alkB1 and alkB2 genes in the n-alkane degradation of strain CH91. RT-qPCR analyses revealed that the two genes were induced by n-alkanes ranging from C16 to C36 and the expression of the alkB2 gene was up-regulated much higher than that of alkB1. The knockout of the alkB1 or alkB2 gene in strain CH91 resulted in the obvious reduction of growth and degradation rates on C16-C36 n-alkanes and the alkB2 knockout mutant exhibited lower growth and degradation rate than the alkB1 knockout mutant. When gene alkB1 or alkB2 was heterologously expressed in Pseudomonas fluorescens KOB2Δ1, the two genes could restore its alkane degradation activity. These results demonstrated that both alkB1 and alkB2 genes were responsible for C16-C36 n-alkanes' degradation of strain CH91, and alkB2 plays a more important role than alkB1. The functional characteristics of the two alkB genes in the degradation of a broad range of n-alkanes make them potential gene candidates for engineering the bacteria used for bioremediation of petroleum hydrocarbon contaminations.

10.
Brief Bioinform ; 24(4)2023 07 20.
Article in English | MEDLINE | ID: mdl-37232385

ABSTRACT

The volume of ribonucleic acid (RNA)-seq data has increased exponentially, providing numerous new insights into various biological processes. However, due to significant practical challenges, such as data heterogeneity, it is still difficult to ensure the quality of these data when integrated. Although some quality control methods have been developed, sample consistency is rarely considered and these methods are susceptible to artificial factors. Here, we developed MassiveQC, an unsupervised machine learning-based approach, to automatically download and filter large-scale high-throughput data. In addition to the read quality used in other tools, MassiveQC also uses the alignment and expression quality as model features. Meanwhile, it is user-friendly since the cutoff is generated from self-reporting and is applicable to multimodal data. To explore its value, we applied MassiveQC to Drosophila RNA-seq data and generated a comprehensive transcriptome atlas across 28 tissues from embryogenesis to adulthood. We systematically characterized fly gene expression dynamics and found that genes with high expression dynamics were likely to be evolutionarily young and expressed at late developmental stages, exhibiting high nonsynonymous substitution rates and low phenotypic severity, and they were involved in simple regulatory programs. We also discovered that human and Drosophila had strong positive correlations in gene expression in orthologous organs, revealing the great potential of the Drosophila system for studying human development and disease.


Subject(s)
Drosophila melanogaster , Transcriptome , Humans , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Gene Expression Profiling/methods , RNA/genetics , RNA-Seq , Sequence Analysis, RNA , High-Throughput Nucleotide Sequencing/methods , Drosophila
11.
Int Immunopharmacol ; 120: 110321, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37192555

ABSTRACT

Inhalation of silica particles (SiO2) causes oxidative stress-induced inflammation and cell apoptosis, ultimately resulting in irreversible pulmonary fibrosis, Unfortunately, effective treatment or preventative measures have yet to be fully established. Metformin (Met), a relatively safe and effective medication for treating diabetes, may hold promise as protective agent against early-stage pulmonary fibrosis in mice through the activation of autophagy and inhibition of endothelial cell to mesenchymal transition (EndoMT). Here, we investigated whether Met could reduce silicosis in mice by regulating inflammation, oxidative stress, and apoptosis, and to identify the underlying protective effect on endothelial cells. First, through pathological observation, we found that 21 consecutive days of Met (100 mg/kg) administration is optimal against silicosis. Next, using haematoxylin-eosin and Masson's trichrome staining and immunoblotting, we found that Met effectively blunted the inflammatory response and collagen deposition at 56 days after exposure to SiO2. We also demonstrated that Met effectively activates AMPK signalling and markedly relieves oxidative stress, the mitochondrial apoptotic pathway and EndoMT induced by SiO2 exposure both in vivo and in vitro. Overall, Met can alleviate SiO2-induced pulmonary fibrosis by regulating oxidative stress and the mitochondrial apoptotic pathway. The current study provides a rationale for the clinical treatment of SiO2-induced pulmonary fibrosis.


Subject(s)
Metformin , Pulmonary Fibrosis , Silicosis , Mice , Animals , Pulmonary Fibrosis/chemically induced , Silicon Dioxide , AMP-Activated Protein Kinases/metabolism , Endothelial Cells/metabolism , Metformin/pharmacology , Metformin/therapeutic use , Silicosis/metabolism , Oxidative Stress , Apoptosis , Inflammation/pathology
12.
J Nutr Biochem ; 119: 109383, 2023 09.
Article in English | MEDLINE | ID: mdl-37209953

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic inflammatory condition that can cause severe damage to the gastrointestinal tract leading to lower quality of life and productivity. Our goal was to investigate the protective effect of the soy peptide lunasin in an in vivo model of susceptibility to IBD and to identify the potential mechanism of action in vitro. In IL-10 deficient mice, oral administration of lunasin reduced the number and frequency of mice exhibiting macroscopic signs of susceptibility to inflammation and significantly decreased levels of the proinflammatory cytokines TNF-α, IL-1ß, IL-6, and IL-18 by up to 95%, 90%, 90%, and 47%, respectively, in different sections of the small and large intestines. Dose-dependent decrease of caspase-1, IL-1ß, and IL-18 in LPS-primed and ATP-activated THP-1 human macrophages demonstrated the ability of lunasin to modulate the NLRP3 inflammasome. We demonstrated that lunasin can decrease susceptibility to IBD in genetically susceptible mice by exerting anti-inflammatory properties.


Subject(s)
Inflammasomes , Inflammatory Bowel Diseases , Mice , Humans , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Interleukin-10/genetics , Interleukin-18 , Quality of Life , Inflammatory Bowel Diseases/drug therapy , Interleukin-1beta , Lipopolysaccharides/toxicity
14.
Am J Transl Res ; 15(1): 392-406, 2023.
Article in English | MEDLINE | ID: mdl-36777848

ABSTRACT

OBJECTIVE: MicroRNAs (miRNAs) have been shown to play an important role in myocardial ischemia/reperfusion (MI/R) injury. This study aimed to determine the role of miR-432 in MI/R injury. METHODS: We established a MI/R injury model by ligation/untying of the left anterior descending coronary artery, and used viral infection to regulate gene expression, such as that of miR-432 in vitro and in vivo, and used RT-qPCR to detect the expression of the gene at mRNA level. Finally, western blotting and immunochemistry analyses were used to determine the protein level. RESULTS: The results of this study show that miR-432 is upregulated in the heart following MI/R injury and that miR-432 overexpression showed a significant decrease, while miR-432 knockdown showed a significant increase in the ratio of the infarct area (IA) to the area at risk (AAR) and levels of serum creating phosphokinase (CPK). Moreover, miR-432 augmented the activation of the ß-catenin pathway and decreased the rate of apoptosis in the mice heart at 24 hours after MI/R injury by targeting RBM5. At the same time, miR-432 overexpression enhanced HIF-1α activation, while ß-catenin deletion attenuated HIF-1α activation induced by miR-432 overexpression. Importantly, ß-catenin and HIF-1α knockdown significantly increased the rate of apoptosis and the ratio of IA to AAR and levels of serum CPK induced by miR-432 overexpression at 24 hours after MI/R injury. miR-432 overexpression strongly decreased levels of SOD and GSH-PX activity, and increased levels of MDA activity and the expression of the gp91phox protein in the mice hearts at 24 hours after MI/R injury, while miR-432 knockdown exerted an opposite effect. miR-432 was also found to have increased NRF2 protein levels by targeting KEAP1 protein expression. NRF2 knockdown reversed the downregulation of the levels of gp91phox protein and MDA, while it also reversed the upregulation of the levels of SOD and GSH-PX induced by miR-432 overexpression in the heart of the mice at 24 hours after MI/R injury. CONCLUSION: miR-432 protects against MI/R injury by activating the ß-catenin/HIF-1α pathway and augmenting NRF2-mediated anti-oxidative stress.

15.
New Phytol ; 238(5): 2194-2209, 2023 06.
Article in English | MEDLINE | ID: mdl-36797661

ABSTRACT

Crop rotation can assemble distinct core microbiota as functionally specific barriers against the invasion of banana Fusarium oxysporum pathogens. However, the taxonomic identity of rotation-unique core taxa and their legacy effects are poorly understood under field conditions. Pepper and eggplant rotations were employed to reveal rotation crop- and banana-unique antagonistic core taxa by in situ tracking of the soil microbiome assembly patterns for 2 yr. The rotation crop-unique antagonistic taxa were isolated and functionally verified by culture-dependent techniques, high-throughput sequencing, and pot experiments. Pepper and eggplant rotations resulted in eight and one rotation-unique antagonistic core taxa out of 12 507 microbial taxa, respectively. These nine antagonistic taxa were retained the following year and significantly decreased banana wilt disease incidence via legacy effects, although the cultivated strains were exclusively of the genera Bacillus and Pseudomonas. The fermentation broth and volatiles of these two taxa showed strong antagonistic activity, and pot experiments demonstrated high suppression of wilt disease and significant promotion of banana growth. Our study provides a mechanistic understanding of the identification of rotation crop-unique antagonistic taxa and highlights the importance of targeted cultivation of beneficial microorganisms for optimizing crop rotation-based scenarios in support of banana agriculture sustainability.


Subject(s)
Fusarium , Microbiota , Musa , Bacteria , Rhizosphere , Crops, Agricultural , Plant Diseases , Soil Microbiology
16.
Acta Pharmacol Sin ; 44(6): 1252-1261, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36627344

ABSTRACT

Aberrant activation of NLRP3 inflammasome causes the progression of various inflammation-related diseases, but the small-molecule inhibitors of NLRP3 are not currently available for clinical use. Tabersonine (Tab) is a natural product derived from a traditional Chinese herb Catharanthus roseus that is usually used as an anti-tumor agent. In this study we investigated the anti-inflammatory effects and molecular targets of Tab. We first screened 151 in-house natural compounds for their inhibitory activity against IL-1ß production in BMDMs. We found that Tab potently inhibited NLRP3-mediated IL-1ß production with an IC50 value of 0.71 µM. Furthermore, we demonstrated that Tab suppressed the assembly of NLRP3 inflammasome, especially the interaction between NLRP3 and ASC. Interestingly, we found that Tab directly bound to NLRP3 NACHT domain, thereby reducing the self-oligomerization of NLRP3. In addition, we showed that administration of Tab significantly ameliorated NLRP3-driven diseases, such as peritonitis, acute lung injury, and sepsis in mouse models. The preventive effects of Tab were not observed in the models of NLRP3 knockout mouse. In conclusion, we have identified Tab as a natural NLRP3 inhibitor and a lead compound for the design and discovery of novel NLRP3 inhibitors.


Subject(s)
Inflammasomes , Quinolines , Animals , Mice , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Macrophages , Quinolines/pharmacology , Interleukin-1beta/metabolism , Mice, Inbred C57BL , Lipopolysaccharides/pharmacology
17.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1015640

ABSTRACT

O-linked-N-acetylglucosamine (O-GlcNAc) modification is a unique post-translational modification that plays a regulatory role in many cellular processes, such as transcription, intracellular signaling, endocytosis, and protein stability. Epidermal growth factor (EGF) domain-specific O-GlcNAc transferase (EOGT) is an endoplasmic reticulum (ER) resident protein which can glycosylate the residues of Ser or Thr of secreted or membrane (transmembrane) glycoproteins containing EGF domain. Notch signaling pathway is involved in cell-to-cell communication which regulates cell biological processes through interactions between adjacent cells. To date, EOGT-mediated O-GlcNAc modification has been found to be involved in many human diseases, and shown significant relation with Notch signaling pathway. However, the specific molecular mechanisms have not been fully elucidated. In this review, we briefly introduce recent studies regarding to the roles of EOGT-mediated O-GlcNAc modification and its correlation with Notch signaling pathway in human diseases.

18.
Acta Pharmaceutica Sinica B ; (6): 2124-2137, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-982832

ABSTRACT

Acute lung injury (ALI), as a common clinical emergency, is pulmonary edema and diffuse lung infiltration caused by inflammation. The lack of non-invasive alert strategy, resulting in failure to carry out preventive treatment, means high mortality and poor prognosis. Stimulator of interferon genes (STING) is a key molecular biomarker of innate immunity in response to inflammation, but there is still a lack of STING-targeted strategy. In this study, a novel STING-targeted PET tracer, [18F]FBTA, was labeled with high radiochemical yield (79.7 ± 4.3%) and molar activity (32.5 ± 2.9 GBq/μmol). We confirmed that [18F]FBTA has a strong STING binding affinity (Kd = 26.86 ± 6.79 nmol/L) and can be used for PET imaging in ALI mice to alert early lung inflammation and to assess the efficacy of drug therapy. Our STING-targeted strategy also reveals that [18F]FBTA can trace ALI before reaching the computed tomography (CT) diagnostic criteria, and demonstrates its better specificity and distribution than [18F]fluorodeoxyglucose ([18F]FDG).

19.
Foods ; 11(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36076805

ABSTRACT

Rising concerns of environment and health from animal-based proteins have driven a massive demand for plant proteins. Textured vegetable protein (TVP) is a plant-protein-based product with fibrous textures serving as a promising meat analog. This study aimed to establish possible correlations between the properties of raw TVPs and the corresponding meatless patties. Twenty-eight commercial TVPs based on different protein types and from different manufacturers were compared in proximate compositions, physicochemical and functional properties, as well as cooking and textural attributes in meatless patties. Significant differences were observed in the compositions and properties of the raw TVPs (p < 0.05) and were well reflected in the final patties. Of all the TVP attributes, rehydration capacity (RHC) was the most dominant factor affecting cooking loss (r = 0.679) and textures of hardness (r = −0.791), shear force (r = −0.621) and compressed juiciness (r = 0.812) in meatless patties, as evidenced by the significant correlations (p < 0.01). The current study may advance the knowledge for TVP-based meat development.

20.
Adv Food Nutr Res ; 101: 71-127, 2022.
Article in English | MEDLINE | ID: mdl-35940709

ABSTRACT

The demand for proteins continues to increase due to their nutritional benefits, the growing world population, and rising protein deficiency. Plant-based proteins represent a sustainable source to supplement costly animal proteins. Pea (Pisum sativum L.) is one of the most produced plant legume crops in the world and contributes to 26% of the total pulse production. The average protein content of pea is about 20%-25%. The commercial utilization of pea proteins is limited, partially due to its less desirable functionalities and beany off-flavor. Protein modification may change these properties and broaden the application of pea proteins in the food industry. Functional properties such as protein solubility, water and oil holding capacity, emulsifying/foaming capacity and stability, and gelation can be altered and improved by enzymatic, chemical, and physical modifications. These modifications work by affecting protein chemical structures, hydrophobicity/hydrophilicity balance, and interactions with other food constituents. Modifiers, reaction conditions, and degree of modifications are critical variables for protein modifications and can be controlled to achieve desirable functional attributes that may meet applications in meat analogs, baking products, dressings, beverages, dairy mimics, encapsulation, and emulsions. Understanding pea protein characteristics will allow us to design better functional ingredients for food applications.


Subject(s)
Fabaceae , Pea Proteins , Animals , Emulsions , Fabaceae/chemistry , Pisum sativum/chemistry , Plant Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...