Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Int Med Res ; 52(1): 3000605231223083, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38230675

ABSTRACT

OBJECTIVE: Respiratory syncytial virus (RSV) and respiratory adenovirus (ADV) are two common pathogens that cause acute respiratory tract infections in children. We aimed to develop a rapid method for detecting both pathogens simultaneously. METHODS: The recombinase polymerase isothermal amplification (RPA) method was combined with the CRISPR/Cas detection system. The assay's specificity and sensitivity were explored by designing RPA primers and CRISPR RNAs (crRNAs) through multi-sequence comparisons, optimizing the reaction conditions, and using a fluorescent reading device. The consistency of the test results of 160 clinical pharyngeal swab samples was studied using quantitative polymerase chain reaction (qPCR) results as a comparative control. RESULTS: RSV and ADV could be detected at levels as low as 104 copies/mL and 103 copies/mL, respectively, within 50 minutes with no cross-reactivity with other similar pathogens. For the clinical samples, compared with the qPCR method, the sensitivities for RSV and ADV were 98.1% and 91.4%, respectively, and the detection specificities were both 100%. The Kappa values were greater than 0.95, suggesting a high degree of consistency. CONCLUSION: This method for detecting RSV and ADV is rapid, sensitive, and specific. It can accurately detect mixed infections in a timely manner, making it suitable for use in areas with scarce healthcare resources.


Subject(s)
CRISPR-Cas Systems , Respiratory Syncytial Virus, Human , Child , Humans , CRISPR-Cas Systems/genetics , Recombinases/metabolism , Nucleic Acid Amplification Techniques/methods , Sensitivity and Specificity , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/metabolism , Adenoviridae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL