Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Bioinformatics ; 24(1): 327, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37653395

ABSTRACT

BACKGROUND: The Earth Biogenome Project has rapidly increased the number of available eukaryotic genomes, but most released genomes continue to lack annotation of protein-coding genes. In addition, no transcriptome data is available for some genomes. RESULTS: Various gene annotation tools have been developed but each has its limitations. Here, we introduce GALBA, a fully automated pipeline that utilizes miniprot, a rapid protein-to-genome aligner, in combination with AUGUSTUS to predict genes with high accuracy. Accuracy results indicate that GALBA is particularly strong in the annotation of large vertebrate genomes. We also present use cases in insects, vertebrates, and a land plant. GALBA is fully open source and available as a docker image for easy execution with Singularity in high-performance computing environments. CONCLUSIONS: Our pipeline addresses the critical need for accurate gene annotation in newly sequenced genomes, and we believe that GALBA will greatly facilitate genome annotation for diverse organisms.


Subject(s)
Eukaryota , Eukaryotic Cells , Animals , Molecular Sequence Annotation , Transcriptome
2.
bioRxiv ; 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37090650

ABSTRACT

The Earth Biogenome Project has rapidly increased the number of available eukaryotic genomes, but most released genomes continue to lack annotation of protein-coding genes. In addition, no transcriptome data is available for some genomes. Various gene annotation tools have been developed but each has its limitations. Here, we introduce GALBA, a fully automated pipeline that utilizes miniprot, a rapid protein- to-genome aligner, in combination with AUGUSTUS to predict genes with high accuracy. Accuracy results indicate that GALBA is particularly strong in the annotation of large vertebrate genomes. We also present use cases in insects, vertebrates, and a previously unannotated land plant. GALBA is fully open source and available as a docker image for easy execution with Singularity in high-performance computing environments. Our pipeline addresses the critical need for accurate gene annotation in newly sequenced genomes, and we believe that GALBA will greatly facilitate genome annotation for diverse organisms.

SELECTION OF CITATIONS
SEARCH DETAIL