Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
SLAS Discov ; 27(8): 448-459, 2022 12.
Article in English | MEDLINE | ID: mdl-36210051

ABSTRACT

BACKGROUND: Stress responses are believed to involve corticotropin releasing factor (CRF), its two cognate receptors (CRF1 and CRF2), and the CRF-binding protein (CRFBP). Whereas decades of research has focused on CRF1, the role of CRF2 in the central nervous system (CNS) has not been thoroughly investigated. We have previously reported that CRF2, interacting with a C terminal fragment of CRFBP, CRFBP(10kD), may have a role in the modulation of neuronal activity. However, the mechanism by which CRF interacts with CRFBP(10kD) and CRF2 has not been fully elucidated due to the lack of useful chemical tools to probe CRFBP. METHODS: We miniaturized a cell-based assay, where CRFBP(10kD) is fused as a chimera with CRF2, and performed a high-throughput screen (HTS) of 350,000 small molecules to find negative allosteric modulators (NAMs) of the CRFBP(10kD)-CRF2 complex. Hits were confirmed by evaluating activity toward parental HEK293 cells, toward CRF2 in the absence of CRFBP(10kD), and toward CRF1 in vitro. Hits were further characterized in ex vivo electrophysiology assays that target: 1) the CRF1+ neurons in the central nucleus of the amygdala (CeA) of CRF1:GFP mice that express GFP under the CRF1 promoter, and 2) the CRF-induced potentiation of N-methyl-D-aspartic acid receptor (NMDAR)-mediated synaptic transmission in dopamine neurons in the ventral tegmental area (VTA). RESULTS: We found that CRFBP(10kD) potentiates CRF-intracellular Ca2+ release specifically via CRF2, indicating that CRFBP may possess excitatory roles in addition to the inhibitory role established by the N-terminal fragment of CRFBP, CRFBP(27kD). We identified novel small molecule CRFBP-CRF2 NAMs that do not alter the CRF1-mediated effects of exogenous CRF but blunt CRF-induced potentiation of NMDAR-mediated synaptic transmission in dopamine neurons in the VTA, an effect mediated by CRF2 and CRFBP. CONCLUSION: These results provide the first evidence of specific roles for CRF2 and CRFBP(10kD) in the modulation of neuronal activity and suggest that CRFBP(10kD)-CRF2 NAMs can be further developed for the treatment of stress-related disorders including alcohol and substance use disorders.


Subject(s)
Corticotropin-Releasing Hormone , Research Design , Humans , Animals , Mice , HEK293 Cells
2.
ACS Pharmacol Transl Sci ; 5(10): 932-944, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36268121

ABSTRACT

Bacterial DNA gyrase, a type IIA DNA topoisomerase that plays an essential role in bacterial DNA replication and transcription, is a clinically validated target for discovering and developing new antibiotics. In this article, based on a supercoiling-dependent fluorescence quenching (SDFQ) method, we developed a high-throughput screening (HTS) assay to identify inhibitors targeting bacterial DNA gyrase and screened the National Institutes of Health's Molecular Libraries Small Molecule Repository library containing 370,620 compounds in which 2891 potential gyrase inhibitors have been identified. According to these screening results, we acquired 235 compounds to analyze their inhibition activities against bacterial DNA gyrase using gel- and SDFQ-based DNA gyrase inhibition assays and discovered 155 new bacterial DNA gyrase inhibitors with a wide structural diversity. Several of them have potent antibacterial activities. These newly discovered gyrase inhibitors include several DNA gyrase poisons that stabilize the gyrase-DNA cleavage complexes and provide new chemical scaffolds for the design and synthesis of bacterial DNA gyrase inhibitors that may be used to combat multidrug-resistant bacterial pathogens. Additionally, this HTS assay can be applied to screen inhibitors against other DNA topoisomerases.

3.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Article in English | MEDLINE | ID: mdl-34930837

ABSTRACT

The particulate guanylyl cyclase A receptor (GC-A), via activation by its endogenous ligands atrial natriuretic peptide (ANP) and b-type natriuretic peptide (BNP), possesses beneficial biological properties such as blood pressure regulation, natriuresis, suppression of adverse remodeling, inhibition of the renin-angiotensin-aldosterone system, and favorable metabolic actions through the generation of its second messenger cyclic guanosine monophosphate (cGMP). Thus, the GC-A represents an important molecular therapeutic target for cardiovascular disease and its associated risk factors. However, a small molecule that is orally bioavailable and directly targets the GC-A to potentiate cGMP has yet to be discovered. Here, we performed a cell-based high-throughput screening campaign of the NIH Molecular Libraries Small Molecule Repository, and we successfully identified small molecule GC-A positive allosteric modulator (PAM) scaffolds. Further medicinal chemistry structure-activity relationship efforts of the lead scaffold resulted in the development of a GC-A PAM, MCUF-651, which enhanced ANP-mediated cGMP generation in human cardiac, renal, and fat cells and inhibited cardiomyocyte hypertrophy in vitro. Further, binding analysis confirmed MCUF-651 binds to GC-A and selectively enhances the binding of ANP to GC-A. Moreover, MCUF-651 is orally bioavailable in mice and enhances the ability of endogenous ANP and BNP, found in the plasma of normal subjects and patients with hypertension or heart failure, to generate GC-A-mediated cGMP ex vivo. In this work, we report the discovery and development of an oral, small molecule GC-A PAM that holds great potential as a therapeutic for cardiovascular, renal, and metabolic diseases.


Subject(s)
Cardiovascular Agents , Cardiovascular Diseases/metabolism , Cyclic GMP/metabolism , Natriuretic Peptides/metabolism , Receptors, Atrial Natriuretic Factor , Aged , Allosteric Regulation , Animals , Cardiovascular Agents/chemistry , Cardiovascular Agents/metabolism , Cardiovascular Agents/pharmacokinetics , Cardiovascular Agents/pharmacology , Cells, Cultured , Female , HEK293 Cells , High-Throughput Screening Assays , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Myocytes, Cardiac/metabolism , Receptors, Atrial Natriuretic Factor/chemistry , Receptors, Atrial Natriuretic Factor/drug effects , Receptors, Atrial Natriuretic Factor/metabolism
4.
Nat Chem Biol ; 15(4): 367-376, 2019 04.
Article in English | MEDLINE | ID: mdl-30804532

ABSTRACT

Hypoxia-inducible factor-2 (HIF-2) is a heterodimeric transcription factor formed through dimerization between an oxygen-sensitive HIF-2α subunit and its obligate partner subunit ARNT. Enhanced HIF-2 activity drives some cancers, whereas reduced activity causes anemia in chronic kidney disease. Therefore, modulation of HIF-2 activity via direct-binding ligands could provide many new therapeutic benefits. Here, we explored HIF-2α chemical ligands using combined crystallographic, biophysical, and cell-based functional studies. We found chemically unrelated antagonists to employ the same mechanism of action. Their binding displaced residue M252 from inside the HIF-2α PAS-B pocket toward the ARNT subunit to weaken heterodimerization. We also identified first-in-class HIF-2α agonists and found that they significantly displaced pocket residue Y281. Its dramatic side chain movement increases heterodimerization stability and transcriptional activity. Our findings show that despite binding to the same HIF-2α PAS-B pocket, ligands can manifest as inhibitors versus activators by mobilizing different pocket residues to allosterically alter HIF-2α-ARNT heterodimerization.


Subject(s)
Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Aryl Hydrocarbon Receptor Nuclear Translocator/physiology , Basic Helix-Loop-Helix Transcription Factors , Crystallography, X-Ray , Dimerization , Ligands , Mice , Models, Molecular , Protein Binding , Protein Multimerization , Transcription Factors/physiology
5.
Assay Drug Dev Technol ; 16(7): 384-396, 2018 10.
Article in English | MEDLINE | ID: mdl-30251873

ABSTRACT

G-protein-coupled receptors (GPCRs) have varying and diverse physiological roles, transmitting signals from a range of stimuli, including light, chemicals, peptides, and mechanical forces. More than 130 GPCRs are orphan receptors (i.e., their endogenous ligands are unknown), representing a large untapped reservoir of potential therapeutic targets for pharmaceutical intervention in a variety of diseases. Current deorphanization approaches are slow, laborious, and usually require some in-depth knowledge about the receptor pharmacology. In this study we describe a cell-based assay to identify small molecule probes of orphan receptors that requires no a priori knowledge of receptor pharmacology. Built upon the concept of pharmacochaperones, where cell-permeable small molecules facilitate the trafficking of mutant receptors to the plasma membrane, the simple and robust technology is readily accessible by most laboratories and is amenable to high-throughput screening. The assay consists of a target harboring a synthetic point mutation that causes retention of the target in the endoplasmic reticulum. Coupled with a beta-galactosidase enzyme-fragment complementation reporter system, the assay identifies compounds that act as pharmacochaperones causing forward trafficking of the mutant GPCR. The assay can identify compounds with varying mechanisms of action including agonists and antagonists. A universal positive control compound circumvents the need for a target-specific ligand. The veracity of the approach is demonstrated using the beta-2-adrenergic receptor. Together with other existing assay technologies to validate the signaling pathways and the specificity of ligands identified, this pharmacochaperone-based approach can accelerate the identification of ligands for these potentially therapeutically useful receptors.


Subject(s)
High-Throughput Screening Assays/methods , Molecular Probes/analysis , Molecular Probes/chemistry , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Small Molecule Libraries/analysis , Small Molecule Libraries/chemistry , Cell Membrane/drug effects , Cell Membrane/metabolism , Humans , Ligands , Molecular Probes/pharmacology , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Tumor Cells, Cultured
6.
ACS Med Chem Lett ; 4(9): 846-851, 2013 Jul 20.
Article in English | MEDLINE | ID: mdl-24611085

ABSTRACT

The neurotensin 1 receptor (NTR1) is an important therapeutic target for a range of disease states including addiction. A high throughput screening campaign, followed by medicinal chemistry optimization, led to the discovery of a non-peptidic ß-arrestin biased agonist for NTR1. The lead compound, 2-cyclopropyl-6,7-dimethoxy-4-(4-(2-methoxyphenyl)- piperazin-1-yl)quinazoline, 32 (ML314), exhibits full agonist behavior against NTR1 (EC50 = 2.0 µM) in the primary assay and selectivity against NTR2. The effect of 32 is blocked by the NTR1 antagonist SR142948A in a dose dependent manner. Unlike peptide based NTR1 agonists, compound 32 has no significant response in a Ca2+ mobilization assay and is thus a biased agonist that activates the ß-arrestin pathway rather than the traditional G q coupled pathway. This bias has distinct biochemical and functional consequences that may lead to physiological advantages. Compound 32 displays good brain penetration in rodents, and studies examining its in vivo properties are underway.

7.
J Med Chem ; 55(16): 7262-72, 2012 Aug 23.
Article in English | MEDLINE | ID: mdl-22813531

ABSTRACT

A high-throughput screen of the NIH's MLSMR collection of ∼340000 compounds was undertaken to identify compounds that inhibit Plasmodium falciparum glucose-6-phosphate dehydrogenase (PfG6PD). PfG6PD is important for proliferating and propagating P. falciparum and differs structurally and mechanistically from the human orthologue. The reaction catalyzed by glucose-6-phosphate dehydrogenase (G6PD) is the first, rate-limiting step in the pentose phosphate pathway (PPP), a key metabolic pathway sustaining anabolic needs in reductive equivalents and synthetic materials in fast-growing cells. In P. falciparum , the bifunctional enzyme glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase (PfGluPho) catalyzes the first two steps of the PPP. Because P. falciparum and infected host red blood cells rely on accelerated glucose flux, they depend on the G6PD activity of PfGluPho. The lead compound identified from this effort, (R,Z)-N-((1-ethylpyrrolidin-2-yl)methyl)-2-(2-fluorobenzylidene)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide, 11 (ML276), is a submicromolar inhibitor of PfG6PD (IC(50) = 889 nM). It is completely selective for the enzyme's human isoform, displays micromolar potency (IC(50) = 2.6 µM) against P. falciparum in culture, and has good drug-like properties, including high solubility and moderate microsomal stability. Studies testing the potential advantage of inhibiting PfG6PD in vivo are in progress.


Subject(s)
Antimalarials/chemical synthesis , Carboxylic Ester Hydrolases/antagonists & inhibitors , Glucosephosphate Dehydrogenase/antagonists & inhibitors , Multienzyme Complexes/antagonists & inhibitors , Plasmodium falciparum/drug effects , Thiazines/chemical synthesis , Antimalarials/chemistry , Antimalarials/pharmacology , Drug Stability , High-Throughput Screening Assays , Parasitic Sensitivity Tests , Plasmodium falciparum/enzymology , Small Molecule Libraries , Stereoisomerism , Structure-Activity Relationship , Thiazines/chemistry , Thiazines/pharmacology
8.
ACS Med Chem Lett ; 1(2): 59-63, 2010 May 13.
Article in English | MEDLINE | ID: mdl-24900177

ABSTRACT

Hematopoietic prostaglandin D synthase (HPGDS) is primarly expressed in mast cells, antigen-presenting cells, and Th-2 cells. HPGDS converts PGH2 into PGD2, a mediator thought to play a pivotal role in airway allergy and inflammatory processes. In this letter, we report the discovery of an orally potent and selective inhibitor of HPGDS that reduces the antigen-induced response in allergic sheep.

SELECTION OF CITATIONS
SEARCH DETAIL