Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Integr Comp Biol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772739

ABSTRACT

The cost of supporting traits that increase mating opportunities and maximize the production of quality offspring is paid in energy. This currency of reproduction is enabled by bioenergetic adaptations that underlie the flexible changes in energy utilization that occur with reproduction. This review considers the traits that contribute to variation in the capacity of an organ to produce ATP. Further, it synthesizes findings from studies that have evaluated bioenergetic adaptations to the production of sexually selected traits and performance during reproduction and the role of change in mitochondrial respiratory performance in the tradeoff between reproduction and longevity. Cumulatively, these works provide evidence that in selecting for redder males, female finches will likely mate with a male with high mitochondrial respiratory performance and, potentially, a higher probability of mitonuclear compatibility. Females from diverse taxa allocate more to reproduction when the respiratory performance of mitochondria or density of the inner mitochondrial membrane in the liver or skeletal muscle is higher. Finally, reproduction does not appear to have persistent negative effects on mitochondrial respiratory performance, countering a role for mitochondria in the trade-off between reproduction and longevity. I close by noting that adaptations that improve mitochondrial respiratory performance appear vital for optimizing reproductive fitness.

2.
Sci Rep ; 14(1): 9456, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658588

ABSTRACT

Migration is one of the most energy-demanding behaviors observed in birds. Mitochondria are the primary source of energy used to support these long-distance movements, yet how mitochondria meet the energetic demands of migration is scarcely studied. We quantified changes in mitochondrial respiratory performance in the White-crowned Sparrow (Zonotrichia leucophrys), which has a migratory and non-migratory subspecies. We hypothesized that the long-distance migratory Gambel's subspecies (Z. l. gambelii) would show higher mitochondrial respiratory performance compared to the non-migratory Nuttall's subspecies (Z. l. nuttalli). We sampled Gambel's individuals during spring pre-migration, active fall migration, and a period with no migration or breeding (winter). We sampled Nuttall's individuals during periods coinciding with fall migration and the winter period of Gambel's annual cycle. Overall, Gambel's individuals had higher citrate synthase, a proxy for mitochondrial volume, than Nuttall's individuals. This was most pronounced prior to and during migration. We found that both OXPHOS capacity (state 3) and basal respiration (state 4) of mitochondria exhibit high seasonal flexibility within Gambel's individuals, with values highest during active migration. These values in Nuttall's individuals were most similar to Gambel's individuals in winter. Our observations indicate that seasonal changes in mitochondrial respiration play a vital role in migration energetics.


Subject(s)
Animal Migration , Mitochondria , Sparrows , Animals , Animal Migration/physiology , Sparrows/physiology , Mitochondria/metabolism , Seasons , Oxidative Phosphorylation , Cell Respiration , Energy Metabolism
3.
Mitochondrion ; 76: 101855, 2024 May.
Article in English | MEDLINE | ID: mdl-38403094

ABSTRACT

Space is a challenging environment that deregulates individual homeostasis. The main external hazards associated with spaceflight include ionizing space radiation, microgravity, isolation and confinement, distance from Earth, and hostile environment. Characterizing the biological responses to spaceflight environment is essential to validate the health risks, and to develop effective protection strategies. Mitochondria energetics is a key mechanism underpinning many physiological, ecological and evolutionary processes. Moreover, mitochondrial stress can be considered one of the fundamental features of space travel. So, we attempt to synthesize key information regarding the extensive effects of spaceflight on mitochondria. In summary, mitochondria are affected by all of the five main hazards of spaceflight at multiple levels, including their morphology, respiratory function, protein, and genetics, in various tissues and organ systems. We emphasize that investigating mitochondrial biology in spaceflight conditions should become the central focus of research on the impacts of spaceflight on human health, as this approach will help resolve numerous challenges of space health and combat several health disorders associated with mitochondrial dysfunction.


Subject(s)
Mitochondria , Space Flight , Humans , Mitochondria/metabolism , Weightlessness/adverse effects , Stress, Physiological , Animals
4.
Physiol Biochem Zool ; 96(5): 321-331, 2023.
Article in English | MEDLINE | ID: mdl-37713715

ABSTRACT

AbstractThrough artificial selection and inbreeding, strains of laboratory mice have been developed that vary in the expression of a single or suite of desired traits valuable to biomedical research. In addition to the selected trait(s), these strains also display variation in pelage color, body size, physiology, and life history. This article exploits the broad phenotypic variation across lab mouse strains to evaluate the relationships between life history and metabolism. Life history variation tends to exist along a fast-slow continuum. There has been considerable interest in understanding the ecological and evolutionary factors underlying life history variation and the physiological and metabolic processes that support them. Yet it remains unclear how these key traits scale across hierarchical levels, as ambiguous empirical support has been garnered at the intraspecific level. Within-species investigations have been thwarted by methodological constraints and environmental factors that obscure the genetic architecture underlying the hypothesized functional integration of life history and metabolic traits. In this analysis, we used the publicly available Mouse Phenome Database by the Jackson Laboratory to investigate the relationships among life history traits (e.g., body size, reproduction, and life span) and metabolic traits (e.g., daily energy expenditure and insulin-like growth factor 1 concentration). Our findings revealed significant variation in reproductive characteristics across strains of mice as well as relationships among life history and metabolic traits. We found evidence of variation along the fast-slow life history continuum, though the direction of some relationships among these traits deviated from interspecific predictions laid out in previous literature. Furthermore, our results suggest that the strength of these relationships are strongest earlier in life.


Subject(s)
Life History Traits , Animals , Mice , Reproduction/physiology , Biological Evolution , Energy Metabolism , Phenotype
5.
Bioessays ; 45(6): e2300026, 2023 06.
Article in English | MEDLINE | ID: mdl-37042115

ABSTRACT

Researchers from diverse disciplines, including organismal and cellular physiology, sports science, human nutrition, evolution and ecology, have sought to understand the causes and consequences of the surprising variation in metabolic rate found among and within individual animals of the same species. Research in this area has been hampered by differences in approach, terminology and methodology, and the context in which measurements are made. Recent advances provide important opportunities to identify and address the key questions in the field. By bringing together researchers from different areas of biology and biomedicine, we describe and evaluate these developments and the insights they could yield, highlighting the need for more standardisation across disciplines. We conclude with a list of important questions that can now be addressed by developing a common conceptual and methodological toolkit for studies on metabolic variation in animals.


Subject(s)
Basal Metabolism , Animals , Humans , Phenotype
6.
Am J Physiol Regul Integr Comp Physiol ; 324(2): R242-R248, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36572555

ABSTRACT

Our current understanding of variation in mitochondrial performance is incomplete. The production of ATP via oxidative phosphorylation is dependent, in part, on the structure of the inner mitochondrial membrane. Morphology of the inner membrane is crucial for the formation of the proton gradient across the inner membrane and, therefore, ATP synthesis. The inner mitochondrial membrane is dynamic, changing shape and surface area. These changes alter density (amount per volume) of the inner mitochondrial membrane within the confined space of the mitochondrion. Because the number of electron transport system proteins within the inner mitochondrial membrane changes with inner mitochondrial membrane area, a change in the amount of inner membrane alters the capacity for ATP production within the organelle. This review outlines the evidence that the association between ATP synthases, inner mitochondrial membrane density, and mitochondrial density (number of mitochondria per cell) impacts ATP production by mitochondria. Furthermore, we consider possible constraints on the capacity of mitochondria to produce ATP by increasing inner mitochondrial membrane density.


Subject(s)
Mitochondria , Mitochondrial Membranes , Mitochondrial Membranes/metabolism , Mitochondria/metabolism , Oxidative Phosphorylation , Electron Transport , Adenosine Triphosphate/metabolism
7.
J Exp Biol ; 225(22)2022 11 15.
Article in English | MEDLINE | ID: mdl-36239066

ABSTRACT

Reproduction and environmental stressors are generally thought to be associated with a cost to the individual experiencing them, but the physiological mechanisms mediating costs of reproduction and maternal effects remain poorly understood. Studies examining the effects of environmental stressors on a female's physiological state and body condition during reproduction, as well as the physiological condition of offspring, have yielded equivocal results. Mitochondrial physiology and oxidative stress have been implicated as important mediators of life-history trade-offs. The goal of this investigation was to uncover the physiological mechanisms responsible for the enhanced trade-off between self-maintenance and offspring investment when an animal is exposed to stressful conditions during reproduction. To that end, we manipulated circulating corticosterone (CORT) levels by orally supplementing lactating female mice with CORT and investigated mitochondrial physiology and oxidative stress of both the reproductive females and their young. We found that maternal CORT exposure resulted in lower litter mass at weaning, but mitochondrial performance and oxidative status of females were not impacted. We also found potential beneficial effects of maternal CORT on mitochondrial function (e.g. higher respiratory control ratio) and oxidative stress (e.g. lower reactive oxygen species production) of offspring in adulthood, suggesting that elevated maternal CORT may be a signal for early-life adversity and prepare the organism with a predictive, adaptive response to future stressors.


Subject(s)
Corticosterone , Lactation , Animals , Female , Mice , Corticosterone/pharmacology , Reproduction/physiology , Oxidative Stress , Mitochondria
8.
J Exp Biol ; 225(13)2022 07 01.
Article in English | MEDLINE | ID: mdl-35694960

ABSTRACT

Mitochondrial function is fundamental to organismal performance, health and fitness - especially during energetically challenging events, such as migration. With this investigation, we evaluated mitochondrial sensitivity to ecologically relevant stressors. We focused on an iconic migrant, the North American monarch butterfly (Danaus plexippus), and examined the effects of two stressors: 7 days of food deprivation and infection by the protozoan parasite Ophryocystis elektroscirrha (known to reduce survival and flight performance). We measured whole-animal resting metabolic rate (RMR) and peak flight metabolic rate, and mitochondrial respiration of isolated mitochondria from the flight muscles. Food deprivation reduced mass-independent RMR and peak flight metabolic rate, whereas infection did not. Fed monarchs used mainly lipids in flight (respiratory quotient 0.73), but the respiratory quotient dropped in food-deprived individuals, possibly indicating switching to alternative energy sources, such as ketone bodies. Food deprivation decreased mitochondrial maximum oxygen consumption but not basal respiration, resulting in lower respiratory control ratio (RCR). Furthermore, food deprivation decreased mitochondrial complex III activity, but increased complex IV activity. Infection did not result in any changes in these mitochondrial variables. Mitochondrial maximum respiration rate correlated positively with mass-independent RMR and flight metabolic rate, suggesting a link between mitochondria and whole-animal performance. In conclusion, low food availability negatively affects mitochondrial function and flight performance, with potential implications for migration, fitness and population dynamics. Although previous studies have reported poor flight performance in infected monarchs, we found no differences in physiological performance, suggesting that reduced flight capacity may be due to structural differences or low energy stores.


Subject(s)
Apicomplexa , Butterflies , Parasites , Animals , Apicomplexa/physiology , Butterflies/physiology , Host-Parasite Interactions , Mitochondria
9.
Cell Metab ; 34(6): 836-856.e5, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35580607

ABSTRACT

Mammals differ more than 100-fold in maximum lifespan. Here, we conducted comparative transcriptomics on 26 species with diverse lifespans. We identified thousands of genes with expression levels negatively or positively correlated with a species' maximum lifespan (Neg- or Pos-MLS genes). Neg-MLS genes are primarily involved in energy metabolism and inflammation. Pos-MLS genes show enrichment in DNA repair, microtubule organization, and RNA transport. Expression of Neg- and Pos-MLS genes is modulated by interventions, including mTOR and PI3K inhibition. Regulatory networks analysis showed that Neg-MLS genes are under circadian regulation possibly to avoid persistent high expression, whereas Pos-MLS genes are targets of master pluripotency regulators OCT4 and NANOG and are upregulated during somatic cell reprogramming. Pos-MLS genes are highly expressed during embryogenesis but significantly downregulated after birth. This work provides targets for anti-aging interventions by defining pathways correlating with longevity across mammals and uncovering circadian and pluripotency networks as central regulators of longevity.


Subject(s)
Longevity , Transcriptome , Aging/physiology , Animals , DNA Repair , Longevity/genetics , Mammals/genetics , Transcriptome/genetics
10.
J R Soc Interface ; 19(190): 20220169, 2022 05.
Article in English | MEDLINE | ID: mdl-35611618

ABSTRACT

While the specific mechanisms of colour production in biological systems are diverse, the mechanics of colour production are straightforward and universal. Colour is produced through the selective absorption of light by pigments, the scattering of light by nanostructures or a combination of both. When Tigriopus californicus copepods were fed a carotenoid-limited diet of yeast, their orange-red body coloration became faint, but their eyespots remained unexpectedly bright red. Raman spectroscopy indicated a clear signature of the red carotenoid pigment astaxanthin in eyespots; however, refractive index matching experiments showed that eyespot colour disappeared when placed in ethyl cinnamate, suggesting a structural origin for the red coloration. We used transmission electron microscopy to identify consecutive nanolayers of spherical air pockets that, when modelled as a single thin film layer, possess the correct periodicity to coherently scatter red light. We then performed microspectrophotometry to quantify eyespot coloration and confirmed a distinct colour difference between the eyespot and the body. The observed spectral reflectance from the eyespot matched the reflectance predicted from our models when considering the additional absorption by astaxanthin. Together, this evidence suggests the persistence of red eyespots in copepods is the result of a combination of structural and pigmentary coloration.


Subject(s)
Copepoda , Animals , Carotenoids , Microscopy, Electron, Transmission , Organelles , Pigmentation
11.
Proc Biol Sci ; 289(1969): 20212278, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35193406

ABSTRACT

The insulin and insulin-like signalling (IIS) network plays an important role in mediating several life-history traits, including growth, reproduction and senescence. Although insulin-like growth factors (IGFs) 1 and 2 are both key hormones in the vertebrate IIS network, research on IGF2 in juveniles and adults has been largely neglected because early biomedical research on rodents found negligible IGF2 postnatal expression. Here, we challenge this assumption and ask to what degree IGF2 is expressed during postnatal life across amniotes by quantifying the relative gene expression of IGF1 and IGF2 using publicly available RNAseq data for 82 amniote species and quantitative polymerase chain reaction on liver cDNA at embryonic, juvenile and adult stages for two lizard, bird and mouse species. We found that (i) IGF2 is expressed postnatally across amniote species and life stages-often at a higher relative expression than IGF1, contradicting rodent models; (ii) the lack of rodent postnatal IGF2 expression is due to phylogenetic placement, not inbreeding or artificial selection; and (iii) adult IGF2 expression is sex-biased in some species. Our results demonstrate that IGF2 expression is typical for amniotes throughout life, suggesting that a comprehensive understanding of the mechanisms mediating variation in life-history traits will require studies that measure both IGFs.


Subject(s)
Insulin-Like Growth Factor I , Lizards , Animals , Insulin/metabolism , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Liver/metabolism , Lizards/genetics , Mice , Phylogeny , Signal Transduction
12.
Heliyon ; 7(9): e08070, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34622072

ABSTRACT

We evaluated mitochondrial dynamics and autophagy by investigating the acute and long-term changes in the liver and skeletal muscle of rats in multiple reproductive stages. A total of 48 rats were used. Rats were randomly assigned to three groups (n = 16 per group): nonreproductive females; females that became pregnant, gave birth, but had their pups removed at birth, and thus, did not lactate; and females that experienced pregnancy, gave birth, and were allowed to lactate. Each group was further divided into two-time subgroups (n = 8 per subgroup) and data were collected at a time-point corresponding to 1) peak lactation (day 14 of lactation) in the lactating animals (4 months of age) and 2) 15 weeks after parturition (12 weeks post-weaning in lactating animals; 7 months of age). Levels of several proteins involved in mitochondrial dynamics and the autophagy system were measured in the liver and skeletal muscle. Beclin1 protein levels in the liver were higher in non-lactating rats two weeks after parturition, while Beclin1 protein levels were highest in 7-month-old animals that had previously experienced a standard reproductive event that included pregnancy and a full 3 week of lactation. These animals also exhibited higher protein levels of the mitochondrial fusion marker Mfn2 in the liver. In skeletal muscle, we also observed increased protein levels of the mitochondrial fission marker DRP1 in non-lactating animals compared to animals that lactated. In summary, our data provide insightful information on the mechanisms that influence liver and skeletal muscle remodeling in response to the metabolic challenges of reproduction, and lactation in particular. Autophagy remodeling and mitochondrial fusion seem to coincide with liver mass size during the lactation stage of reproduction. Our findings highlight the complex changes that occur in the liver and skeletal muscle during reproduction, and highlights the remarkable plasticity required during this demanding metabolic feat.

13.
J Vis Exp ; (174)2021 08 27.
Article in English | MEDLINE | ID: mdl-34515689

ABSTRACT

Mitochondrial energetics is a central theme in animal biochemistry and physiology, with researchers using mitochondrial respiration as a metric to investigate metabolic capability. To obtain the measures of mitochondrial respiration, fresh biological samples must be used, and the entire laboratory procedure must be completed within approximately 2 h. Furthermore, multiple pieces of specialized equipment are required to perform these laboratory assays. This creates a challenge for measuring mitochondrial respiration in the tissues of wild animals living far from physiology laboratories as live tissue cannot be preserved for very long after collection in the field. Moreover, transporting live animals over long distances induces stress, which can alter mitochondrial energetics. This manuscript introduces the Auburn University (AU) MitoMobile, a mobile mitochondrial physiology laboratory that can be taken into the field and used on-site to measure mitochondrial metabolism in tissues collected from wild animals. The basic features of the mobile laboratory and the step-by-step methods for measuring isolated mitochondrial respiration rates are presented. Additionally, the data presented validate the success of outfitting the mobile mitochondrial physiology laboratory and making mitochondrial respiration measurements. The novelty of the mobile laboratory lies in the ability to drive to the field and perform mitochondrial measurements on the tissues of animals captured on site.


Subject(s)
Laboratories , Mitochondria , Animals , Biochemistry , Humans , Respiration
14.
Animals (Basel) ; 11(9)2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34573613

ABSTRACT

Lactation is physiologically demanding, requiring increased nutrient and energy use. Mammary and extramammary tissues undergo metabolic changes for lactation. Although it has long been recognized that mitochondria play a critical role in lactation, the mitochondrial adaptations for milk synthesis in supporting tissues, such as liver and skeletal muscle are relatively understudied. In this study, we assessed the mitochondrial function in these tissues across lactation in dairy cattle. Tissue biopsies were taken at 8 ± 2 d (early, n = 11), 75 ± 4 d (peak, n = 11) and 199 ± 6 d (late, n = 11) in milk. Early lactation biopsies were harvested from one group of cows and the peak and late biopsies from a second cohort. Milk yield (MY) was recorded at each milking and milk samples were collected for composition analysis. Mitochondrial efficiency was quantified as the respiratory control ratio (RCR), comparing maximal to resting respiration rates. Liver complex II RCR was positively associated with MY. Liver ROS emission increased across lactation whereas liver antioxidant activity was similar across lactation. No change was detected in skeletal muscle RCR or ROS emission, but muscle GPx activity decreased across lactation and muscle SOD was negatively associated with MY. Muscle oxidative damage was elevated at early and late lactation. Across lactation, genes involved in mitochondrial biogenesis were upregulated in the liver. Our results indicate that during lactation, liver mitochondrial biogenesis and efficiency are increased, which is associated with greater milk yield. In contrast, the mitochondrial efficiency in skeletal muscle remains consistent across lactation, but undergoes oxidative damage, which is associated with reduced antioxidant activity.

15.
Physiol Biochem Zool ; 94(2): 71-82, 2021.
Article in English | MEDLINE | ID: mdl-33399516

ABSTRACT

AbstractAs a major physiological mechanism involved in cellular renewal and repair, immune function is vital to the body's capacity to support tissue maintenance and organismal survival. Because immune defenses can be energetically expensive, the activities of metabolically active organs, such as the liver, are predicted to increase during infection by most pathogens. However, some pathogens are immunosuppressive, which might reduce the metabolic capacities of select organs to suppress immune response. Mycoplasma gallisepticum (MG) is a well-known immunosuppressive bacterium that infects domestic chickens and turkeys as well as songbirds. In the house finch (Haemorhous mexicanus), which is the primary host for MG among songbird species, MG infects both the respiratory system and the conjunctiva of the eye, causing conspicuous swelling. To study the effect of a systemic bacterial infection on cellular respiration and oxidative damage in the house finch, we measured mitochondrial respiration, mitochondrial membrane potential, reactive oxygen species production, and oxidative damage in the livers of house finches that were wild caught and either infected with MG, as indicated by genetic screening for the pathogen, or free of MG infection. We observed that MG-infected house finches showed significantly lower oxidative lipid and protein damage in liver tissue compared with their uninfected counterparts. Moreover, using complex II substrates, we documented a nonsignificant trend for lower state 3 respiration of liver mitochondria in MG-infected house finches compared with uninfected house finches (P=0.07). These results are consistent with the hypothesis that MG suppresses organ function in susceptible hosts.


Subject(s)
Bird Diseases/metabolism , Mitochondria/metabolism , Mycoplasma Infections/veterinary , Mycoplasma gallisepticum , Oxidative Stress , Songbirds/microbiology , Animals , Bird Diseases/microbiology , Mycoplasma Infections/metabolism , Mycoplasma Infections/microbiology
16.
Trends Ecol Evol ; 36(4): 321-332, 2021 04.
Article in English | MEDLINE | ID: mdl-33436278

ABSTRACT

Biologists have long appreciated the critical role that energy turnover plays in understanding variation in performance and fitness among individuals. Whole-organism metabolic studies have provided key insights into fundamental ecological and evolutionary processes. However, constraints operating at subcellular levels, such as those operating within the mitochondria, can also play important roles in optimizing metabolism over different energetic demands and time scales. Herein, we explore how mitochondrial aerobic metabolism influences different aspects of organismal performance, such as through changing adenosine triphosphate (ATP) and reactive oxygen species (ROS) production. We consider how such insights have advanced our understanding of the mechanisms underpinning key ecological and evolutionary processes, from variation in life-history traits to adaptation to changing thermal conditions, and we highlight key areas for future research.


Subject(s)
Energy Metabolism , Mitochondria , Adaptation, Physiological , Adenosine Triphosphate/metabolism , Humans , Reactive Oxygen Species/metabolism
17.
Biol Rev Camb Philos Soc ; 96(2): 541-556, 2021 04.
Article in English | MEDLINE | ID: mdl-33164297

ABSTRACT

Considerable progress has been made in understanding the physiological basis for variation in the life-history patterns of animals, particularly with regard to the roles of oxidative stress and hormonal regulation. However, an underappreciated and understudied area that could play a role in mediating inter- and intraspecific variation of life history is endoplasmic reticulum (ER) stress, and the resulting unfolded protein response (UPRER ). ER stress response and the UPRER maintain proteostasis in cells by reducing the intracellular load of secretory proteins and enhancing protein folding capacity or initiating apoptosis in cells that cannot recover. Proper modulation of the ER stress response and execution of the UPRER allow animals to respond to intracellular and extracellular stressors and adapt to constantly changing environments. ER stress responses are heritable and there is considerable individual variation in UPRER phenotype in animals, suggesting that ER stress and UPRER phenotype can be subjected to natural selection. The variation in UPRER phenotype presumably reflects the way animals respond to ER stress and environmental challenges. Most of what we know about ER stress and the UPRER in animals has either come from biomedical studies using cell culture or from experiments involving conventional laboratory or agriculturally important models that exhibit limited genetic diversity. Furthermore, these studies involve the assessment of experimentally induced qualitative changes in gene expression as opposed to the quantitative variations that occur in naturally existing populations. Almost all of these studies were conducted in controlled settings that are often quite different from the conditions animals experience in nature. Herein, we review studies that investigated ER stress and the UPRER in relation to key life-history traits including growth and development, reproduction, bioenergetics and physical performance, and ageing and senescence. We then ask if these studies can inform us about the role of ER stress and the UPRER in mediating the aforementioned life-history traits in free-living animals. We propose that there is a need to conduct experiments pertaining to ER stress and the UPRER in ecologically relevant settings, to characterize variation in ER stress and the UPRER in free-living animals, and to relate the observed variation to key life-history traits. We urge others to integrate multiple physiological systems and investigate how interactions between ER stress and oxidative stress shape life-history trade-offs in free-living animals.


Subject(s)
Endoplasmic Reticulum Stress , Endoplasmic Reticulum , Adaptation, Physiological , Animals , Apoptosis , Endoplasmic Reticulum/metabolism , Unfolded Protein Response
18.
Mitochondrion ; 56: 82-90, 2021 01.
Article in English | MEDLINE | ID: mdl-33220503

ABSTRACT

The efficient production of energy via oxidative phosphorylation is essential to the growth, survival, and reproduction of eukaryotes. The behavior (position of, and communication between, mitochondria) and morphology of mitochondria play key roles in efficient energy production and are influenced by oxidative stressors such as ultraviolet (UV) radiation. We tested the hypothesis that mitochondria change their behavior and morphology to meet energetic demands of responding to changes in oxidative stress. Specifically, we predicted that UV irradiation would increase the density of inner mitochondrial membrane and proportion of inter-mitochondrial junctions to influence whole-animal metabolic rate. Using transmission electron microscopy, we found that both three and six hours of UV-A/B irradiation (0.5 W/m2) increased the proportion of inter-mitochondrial junctions (with increasing mitochondrial aspect ratio) and the density of inner mitochondrial membrane in myocytes of Tigriopus californicus copepods. Mitochondrial density increased following both irradiation treatments, but mitochondrial size decreased under the six hour treatment. Metabolic rate was maintained under three hours of irradiation but decreased following six hours of exposure. These observations demonstrate that the density of inner mitochondrial membrane and proportion of inter-mitochondrial junctions can play formative roles in maintaining whole-animal metabolic rate, and ultimately organismal performance, under exposure to an oxidative stressor.


Subject(s)
Copepoda/cytology , Mitochondria, Muscle/ultrastructure , Mitochondrial Membranes/ultrastructure , Ultraviolet Rays/adverse effects , Animals , Copepoda/radiation effects , Energy Metabolism/radiation effects , Female , Male , Microscopy, Electron, Transmission , Mitochondria, Muscle/radiation effects , Mitochondrial Membranes/radiation effects , Oxidative Phosphorylation , Oxidative Stress
19.
Integr Comp Biol ; 60(3): 732-741, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32818268

ABSTRACT

One of the key foci of ecoimmunology is understanding the physiological interactions between reproduction and immune defense. To assess an immune challenge, investigators typically measure an immune response at a predetermined time point that was selected to represent a peak response. These time points often are based on the immunological responses of nonreproductive males. Problematically, these peaks have been applied to studies quantifying immune responses of females during reproduction, despite the fact that nonreproductive males and reproductive females display fundamentally different patterns of energy expenditure. Previous work within pharmacological research has reported that the response to the commonly-used antigen keyhole limpet hemocyanin (KLH) varies among individuals and between females and males. In this heuristic analysis, we characterize antibody responses to KLH in females with varying reproductive demands (nonreproductive, lactating, concurrently lactating, and pregnant). Serum was taken from one animal per day per group and assessed for general and specific Immunoglobulins (Igs) G and M. We then used regression analysis to characterize the antibody response curves across groups. Our results demonstrate that the antibody response curve is asynchronous among females with varying maternal demands and temporally differs from the anticipated peak responses reflected in standardized protocols. These findings highlight the importance of multiple sampling points across treatment groups for a more integrative assessment of how reproductive demand alters antibody responses in females beyond a single measurement.


Subject(s)
Adaptive Immunity , Antibodies/immunology , Hemocyanins/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Animals , Antibody Formation , Female , Lactation/immunology , Male , Mice , Mice, Inbred ICR , Pregnancy/immunology
20.
J Comp Physiol B ; 190(4): 465-477, 2020 07.
Article in English | MEDLINE | ID: mdl-32506190

ABSTRACT

The life-history patterns that animals display are a product of their ability to maximize reproductive performance while concurrently balancing numerous metabolic demands. For example, the energetic costs of reproduction may reduce an animal's ability to support self-maintenance and longevity. In this work, we evaluated the impact of parity on mitochondrial physiology in laboratory mice. The theory of mitohormesis suggests that modest exposure to reactive oxygen species can improve performance, while high levels of exposure are damaging. Following this theory, we hypothesized that females that experienced one bout of reproduction (primiparous) would display improved mitochondrial capacity and reduced oxidative damage relative to non-reproductive (nulliparous) mice, while females that had four reproductive events (multiparous) would have lower mitochondrial performance and greater oxidative damage than both nulliparous and primiparous females. We observed that multiple reproductive events enhanced the mitochondrial respiratory capacity of liver mitochondria in females with high body mass. Four-bout females showed a positive relationship between body mass and mitochondrial capacity. In contrast, non-reproductive females showed a negative relationship between body mass and mitochondrial capacity and primiparous females had a slope that did not differ from zero. Other measured variables, too, were highly dependent on body mass, suggesting that a female's body condition has strong impacts on mitochondrial physiology. We also evaluated the relationship between how much females allocated to reproduction (cumulative mass of all young weaned) and mitochondrial function and oxidative stress in the multiparous females. We found that females that allocated more to reproduction had lower basal respiration (state 4), lower mitochondrial density, and higher protein oxidation in liver mitochondria than females that allocated less. These results suggest that, at least through their first four reproductive events, female laboratory mice may experience bioenergetic benefits from reproduction but only those females that allocated the most to reproduction appear to experience a potential cost of reproduction.


Subject(s)
Body Weight , Mitochondria, Liver/metabolism , Reproduction/physiology , Animals , DNA Damage , Female , Heart/anatomy & histology , Hydrogen Peroxide/metabolism , Liver/anatomy & histology , Liver/metabolism , Mice, Inbred ICR , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/metabolism , Myocardium/metabolism , Organ Size , Oxidoreductases/metabolism , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...