Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Eur Heart J ; 43(16): 1569-1577, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35139537

ABSTRACT

AIMS: Current risk scores do not accurately identify patients at highest risk of recurrent atherosclerotic cardiovascular disease (ASCVD) in need of more intensive therapeutic interventions. Advances in high-throughput plasma proteomics, analysed with machine learning techniques, may offer new opportunities to further improve risk stratification in these patients. METHODS AND RESULTS: Targeted plasma proteomics was performed in two secondary prevention cohorts: the Second Manifestations of ARTerial disease (SMART) cohort (n = 870) and the Athero-Express cohort (n = 700). The primary outcome was recurrent ASCVD (acute myocardial infarction, ischaemic stroke, and cardiovascular death). Machine learning techniques with extreme gradient boosting were used to construct a protein model in the derivation cohort (SMART), which was validated in the Athero-Express cohort and compared with a clinical risk model. Pathway analysis was performed to identify specific pathways in high and low C-reactive protein (CRP) patient subsets. The protein model outperformed the clinical model in both the derivation cohort [area under the curve (AUC): 0.810 vs. 0.750; P < 0.001] and validation cohort (AUC: 0.801 vs. 0.765; P < 0.001), provided significant net reclassification improvement (0.173 in validation cohort) and was well calibrated. In contrast to a clear interleukin-6 signal in high CRP patients, neutrophil-signalling-related proteins were associated with recurrent ASCVD in low CRP patients. CONCLUSION: A proteome-based risk model is superior to a clinical risk model in predicting recurrent ASCVD events. Neutrophil-related pathways were found in low CRP patients, implying the presence of a residual inflammatory risk beyond traditional NLRP3 pathways. The observed net reclassification improvement illustrates the potential of proteomics when incorporated in a tailored therapeutic approach in secondary prevention patients.


Subject(s)
Atherosclerosis , Brain Ischemia , Cardiovascular Diseases , Stroke , C-Reactive Protein/analysis , Cardiovascular Diseases/prevention & control , Heart Disease Risk Factors , Humans , Proteomics , Risk Assessment/methods , Risk Factors , Secondary Prevention
2.
Atherosclerosis ; 344: 7-12, 2022 03.
Article in English | MEDLINE | ID: mdl-35114557

ABSTRACT

BACKGROUND AND AIMS: Severe obstructive sleep apnea (OSA) is associated with an increased risk of cardiovascular disease. Experimental evidence suggests that this risk may be mediated by chronic sympathetic hyperactivation and systemic inflammation, but the precise mechanisms remain to be unraveled. Our aim was to evaluate whether severe OSA patients are characterized by increased sympathetic and hematopoietic activity, potentially driving atherosclerosis. METHODS: Untreated patients with severe OSA (apnea-hypopnea index (AHI) > 30 per hour) were matched with mild OSA patients (AHI<15 & >5 per hour) according to age, sex, and body mass index. Study objectives were to assess baroreflex sensitivity (BRS) and heart-rate variability (HRV) using continuous finger blood pressure measurements, hematopoietic activity in the bone marrow and spleen, and arterial inflammation with 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT). RESULTS: A total of 34 subjects, 17 per group, were included in the analysis. Mean age was 60.7 ± 6.2 years, 24 (70.6%) were male. Mean AHI was 40.5 ± 12.6 per hour in the severe OSA group, and 10.5 ± 3.4 per hour in the mild OSA group. Participants with severe OSA were characterized by reduced BRS (5.7 [4.6-7.8] ms/mmHg in severe vs 8.2 [6.9-11.8] ms/mmHg in mild OSA, p = 0.033) and increased splenic activity (severe OSA 18F-FDG uptake 3.56 ± 0.77 vs mild OSA 3.01 ± 0.68; p = 0.036). HRV, bone marrow activity and arterial inflammation were comparable between groups. CONCLUSIONS: Patients with severe OSA are characterized by decreased BRS and increased splenic activity. Randomized controlled trials are warranted to assess whether OSA treatment reduces sympathetic and splenic activity.


Subject(s)
Baroreflex , Sleep Apnea, Obstructive , Aged , Humans , Male , Middle Aged , Polysomnography , Positron Emission Tomography Computed Tomography , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/diagnosis , Spleen/diagnostic imaging
3.
Sci Rep ; 11(1): 4126, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33602971

ABSTRACT

Individuals with chronic kidney disease are at an increased risk for cardiovascular disease. This risk may partially be explained by a chronic inflammatory state in these patients, reflected by increased arterial wall and cellular inflammation. Statin treatment decreases cardiovascular risk and arterial inflammation in non-CKD subjects. In patients with declining kidney function, cardiovascular benefit resulting from statin therapy is attenuated, possibly due to persisting inflammation. In the current study, we assessed the effect of statin treatment on arterial wall and cellular inflammation. Fourteen patients with chronic kidney disease stage 3 or 4, defined by an estimated Glomerular Filtration Rate between 15 and 60 mL/min/1.73 m2, without cardiovascular disease were included in a single center, open label study to assess the effect of atorvastatin 40 mg once daily for 12 weeks (NTR6896). At baseline and at 12 weeks of treatment, we assessed arterial wall inflammation by 18F-fluoro-deoxyglucose positron-emission tomography computed tomography (18F-FDG PET/CT) and the phenotype of circulating monocytes were assessed. Treatment with atorvastatin resulted in a 46% reduction in LDL-cholesterol, but this was not accompanied by an attenuation in arterial wall inflammation in the aorta or carotid arteries, nor with changes in chemokine receptor expression of circulating monocytes. Statin treatment does not abolish arterial wall or cellular inflammation in subjects with mild to moderate chronic kidney disease. These results imply that CKD-associated inflammatory activity is mediated by factors beyond LDL-cholesterol and specific anti-inflammatory interventions might be necessary to further dampen the inflammatory driven CV risk in these subjects.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Atorvastatin/therapeutic use , Cardiovascular Diseases/drug therapy , Inflammation/drug therapy , Renal Insufficiency, Chronic/diet therapy , Aged , Aorta/drug effects , Aorta/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Cardiovascular Diseases/metabolism , Carotid Arteries/drug effects , Carotid Arteries/metabolism , Cholesterol, LDL/metabolism , Female , Fluorodeoxyglucose F18/administration & dosage , Heart Disease Risk Factors , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Inflammation/metabolism , Male , Middle Aged , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/metabolism , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography/methods , Radiopharmaceuticals/administration & dosage , Renal Insufficiency, Chronic/metabolism , Risk Factors
5.
Stroke ; 51(10): 2972-2982, 2020 10.
Article in English | MEDLINE | ID: mdl-32878565

ABSTRACT

BACKGROUND AND PURPOSE: General population studies have shown that elevated Lp(a) (lipoprotein[a]) levels are an emerging risk factor for cardiovascular disease and subsequent cardiovascular events. The role of Lp(a) for the risk of secondary MACE in patients undergoing carotid endarterectomy (CEA) is unknown. Our objective is to assess the association of elevated Lp(a) levels with the risk of secondary MACE in patients undergoing CEA. METHODS: Lp(a) concentrations were determined in preoperative blood samples of 944 consecutive patients with CEA included in the Athero-Express Biobank Study. During 3-year follow-up, major adverse cardiovascular events (MACE), consisting of myocardial infarction, stroke, and cardiovascular death, were documented. RESULTS: After 3 years follow-up, Kaplan-Meier cumulative event rates for MACE were 15.4% in patients with high Lp(a) levels (>137 nmol/L; >80th cohort percentile) and 10.2% in patients with low Lp(a) levels (≤137 nmol/L; ≤80th cohort percentile; log-rank test: P=0.047). Cox regression analyses adjusted for conventional cardiovascular risk factors revealed a significant association between high Lp(a) levels and 3-year MACE with an adjusted hazard ratio of 1.69 (95% CI, 1.07-2.66). One-third of MACE occurred within 30 days after CEA, with an adjusted hazard ratio for the 30-day risk of MACE of 2.05 (95% CI, 1.01-4.17). Kaplan-Meier curves from time point 30 days to 3 years onward revealed no significant association between high Lp(a) levels and MACE. Lp(a) levels were not associated with histological carotid plaque characteristics. CONCLUSIONS: High Lp(a) levels (>137 nmol/L; >80th cohort percentile) are associated with an increased risk of 30-day MACE after CEA. This identifies elevated Lp(a) levels as a new potential risk factor for secondary cardiovascular events in patients after carotid surgery. Future studies are required to investigate whether Lp(a) levels might be useful in guiding treatment algorithms for carotid intervention.


Subject(s)
Carotid Stenosis/surgery , Endarterectomy, Carotid/adverse effects , Lipoprotein(a)/blood , Myocardial Infarction/epidemiology , Postoperative Complications/epidemiology , Stroke/epidemiology , Aged , Aged, 80 and over , Biomarkers/blood , Carotid Stenosis/blood , Female , Humans , Incidence , Male , Middle Aged , Myocardial Infarction/etiology , Postoperative Complications/etiology , Prognosis , Risk , Risk Assessment , Stroke/etiology , Time Factors
6.
Eur Heart J ; 41(41): 3998-4007, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32808014

ABSTRACT

AIMS: In the era of personalized medicine, it is of utmost importance to be able to identify subjects at the highest cardiovascular (CV) risk. To date, single biomarkers have failed to markedly improve the estimation of CV risk. Using novel technology, simultaneous assessment of large numbers of biomarkers may hold promise to improve prediction. In the present study, we compared a protein-based risk model with a model using traditional risk factors in predicting CV events in the primary prevention setting of the European Prospective Investigation (EPIC)-Norfolk study, followed by validation in the Progressione della Lesione Intimale Carotidea (PLIC) cohort. METHODS AND RESULTS: Using the proximity extension assay, 368 proteins were measured in a nested case-control sample of 822 individuals from the EPIC-Norfolk prospective cohort study and 702 individuals from the PLIC cohort. Using tree-based ensemble and boosting methods, we constructed a protein-based prediction model, an optimized clinical risk model, and a model combining both. In the derivation cohort (EPIC-Norfolk), we defined a panel of 50 proteins, which outperformed the clinical risk model in the prediction of myocardial infarction [area under the curve (AUC) 0.754 vs. 0.730; P < 0.001] during a median follow-up of 20 years. The clinically more relevant prediction of events occurring within 3 years showed an AUC of 0.732 using the clinical risk model and an AUC of 0.803 for the protein model (P < 0.001). The predictive value of the protein panel was confirmed to be superior to the clinical risk model in the validation cohort (AUC 0.705 vs. 0.609; P < 0.001). CONCLUSION: In a primary prevention setting, a proteome-based model outperforms a model comprising clinical risk factors in predicting the risk of CV events. Validation in a large prospective primary prevention cohort is required to address the value for future clinical implementation in CV prevention.


Subject(s)
Cardiovascular Diseases , Proteomics , Cardiovascular Diseases/prevention & control , Heart Disease Risk Factors , Humans , Primary Prevention , Prospective Studies , Risk Assessment , Risk Factors
7.
Eur Heart J ; 41(24): 2262-2271, 2020 06 21.
Article in English | MEDLINE | ID: mdl-32268367

ABSTRACT

AIMS: Elevated lipoprotein(a) [Lp(a)] is strongly associated with an increased cardiovascular disease (CVD) risk. We previously reported that pro-inflammatory activation of circulating monocytes is a potential mechanism by which Lp(a) mediates CVD. Since potent Lp(a)-lowering therapies are emerging, it is of interest whether patients with elevated Lp(a) experience beneficial anti-inflammatory effects following large reductions in Lp(a). METHODS AND RESULTS: Using transcriptome analysis, we show that circulating monocytes of healthy individuals with elevated Lp(a), as well as CVD patients with increased Lp(a) levels, both have a pro-inflammatory gene expression profile. The effect of Lp(a)-lowering on gene expression and function of monocytes was addressed in two local sub-studies, including 14 CVD patients with elevated Lp(a) who received apolipoprotein(a) [apo(a)] antisense (AKCEA-APO(a)-LRx) (NCT03070782), as well as 18 patients with elevated Lp(a) who received proprotein convertase subtilisin/kexin type 9 antibody (PCSK9ab) treatment (NCT02729025). AKCEA-APO(a)-LRx lowered Lp(a) by 47% and reduced the pro-inflammatory gene expression in monocytes of CVD patients with elevated Lp(a), which coincided with a functional reduction in transendothelial migration capacity of monocytes ex vivo (-17%, P < 0.001). In contrast, PCSK9ab treatment lowered Lp(a) by 16% and did not alter transcriptome nor functional properties of monocytes, despite an additional reduction of 65% in low-density lipoprotein cholesterol (LDL-C). CONCLUSION: Potent Lp(a)-lowering following AKCEA-APO(a)-LRx, but not modest Lp(a)-lowering combined with LDL-C reduction following PCSK9ab treatment, reduced the pro-inflammatory state of circulating monocytes in patients with elevated Lp(a). These ex vivo data support a beneficial effect of large Lp(a) reductions in patients with elevated Lp(a).


Subject(s)
Lipoprotein(a) , Monocytes , Apoprotein(a)/genetics , Humans , Oligonucleotides , Proprotein Convertase 9/genetics
9.
Circ Res ; 126(10): 1346-1359, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32160811

ABSTRACT

RATIONALE: Patients with elevated levels of lipoprotein(a) [Lp(a)] are hallmarked by increased metabolic activity in the arterial wall on positron emission tomography/computed tomography, indicative of a proinflammatory state. OBJECTIVE: We hypothesized that Lp(a) induces endothelial cell inflammation by rewiring endothelial metabolism. METHODS AND RESULTS: We evaluated the impact of Lp(a) on the endothelium and describe that Lp(a), through its oxidized phospholipid content, activates arterial endothelial cells, facilitating increased transendothelial migration of monocytes. Transcriptome analysis of Lp(a)-stimulated human arterial endothelial cells revealed upregulation of inflammatory pathways comprising monocyte adhesion and migration, coinciding with increased 6-phophofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB)-3-mediated glycolysis. ICAM (intercellular adhesion molecule)-1 and PFKFB3 were also found to be upregulated in carotid plaques of patients with elevated levels of Lp(a). Inhibition of PFKFB3 abolished the inflammatory signature with concomitant attenuation of transendothelial migration. CONCLUSIONS: Collectively, our findings show that Lp(a) activates the endothelium by enhancing PFKFB3-mediated glycolysis, leading to a proadhesive state, which can be reversed by inhibition of glycolysis. These findings pave the way for therapeutic agents targeting metabolism aimed at reducing inflammation in patients with cardiovascular disease.


Subject(s)
Atherosclerosis/metabolism , Endothelial Cells/metabolism , Glycolysis , Leukocytes/metabolism , Lipoprotein(a)/metabolism , Transendothelial and Transepithelial Migration , Aged , Aged, 80 and over , Animals , Apolipoprotein B-100/genetics , Apolipoprotein B-100/metabolism , Apolipoproteins A/genetics , Apolipoproteins A/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , Atherosclerosis/therapy , Cells, Cultured , Coculture Techniques , Disease Models, Animal , Endothelial Cells/pathology , Female , Humans , Inflammation Mediators , Intercellular Adhesion Molecule-1/metabolism , Leukocytes/pathology , Lipoprotein(a)/genetics , Male , Mice, Transgenic , Middle Aged , Mutation , Oligonucleotides, Antisense/therapeutic use , Phosphofructokinase-2/metabolism , Receptors, LDL/deficiency , Receptors, LDL/genetics
10.
Arterioscler Thromb Vasc Biol ; 40(2): 462-472, 2020 02.
Article in English | MEDLINE | ID: mdl-31801376

ABSTRACT

OBJECTIVE: Netrin-1 has been shown to play a role in the initiation of atherosclerosis in mice models. However, little is known about the role of Netrin-1 in humans. We set out to study whether Netrin-1 is associated with different stages of atherosclerosis. Approach and Results: Plasma Netrin-1 levels were measured in different patient cohorts: (1) 22 patients with high cardiovascular risk who underwent arterial wall inflammation assessment using positron-emission tomography / computed tomography, (2) 168 patients with a positive family history of premature atherosclerosis in whom coronary artery calcium scores were obtained, and (3) 104 patients with chest pain who underwent coronary computed tomography angiography imaging to evaluate plaque vulnerability and burden. Netrin-1 plasma levels were negatively correlated with arterial wall inflammation (ß, -0.01 [95% CI, 0.02 to -0.01] R2, 0.61; P<0.0001), and concentrations of Netrin-1 were significantly lower when atherosclerosis was present compared with individuals without atherosclerosis (28.01 versus 10.51 ng/mL, P<0.001). There was no difference in Netrin-1 plasma concentrations between patients with stable versus unstable plaques (11.17 versus 11.74 ng/mL, P=0.511). However, Netrin-1 plasma levels were negatively correlated to total plaque volume (ß, -0.09 [95% CI, -0.11 to -0.08] R2, 0.57, P<0.0001), calcified plaque volumes (ß, -0.10 [95% CI, -0.12 to -0.08] R2, 0.53; P<0.0001), and noncalcified plaque volumes (ß, -0.08 [95% CI, -0.10 to -0.06] R2, 0.41; P<0.0001). Treatment of inflammatory stimulated endothelial cells with plasma with high Netrin-1 level resulted in reduced endothelial inflammation and consequently, less monocyte adhesion. CONCLUSIONS: Netrin-1 plasma levels are lower in patients with subclinical atherosclerosis and in patients with arterial wall inflammation. Netrin-1 is not associated with plaque vulnerability; however, it is negatively correlated to plaque burden, suggesting that Netrin-1 is involved in some, but not all, stages of atherosclerosis.


Subject(s)
Atherosclerosis/blood , Coronary Artery Disease/blood , Coronary Vessels/diagnostic imaging , Netrin-1/blood , Atherosclerosis/diagnosis , Biomarkers/blood , Computed Tomography Angiography , Coronary Angiography , Coronary Artery Disease/diagnosis , Female , Humans , Male , Middle Aged , Positron Emission Tomography Computed Tomography , Prognosis
12.
Eur Heart J ; 39(27): 2589-2596, 2018 07 14.
Article in English | MEDLINE | ID: mdl-29931232

ABSTRACT

Aims: Lipoprotein(a) (Lp(a)) elevation is a causal risk factor for cardiovascular disease (CVD). It has however been suggested that elevated Lp(a) causes CVD mainly in individuals with high low-density lipoprotein cholesterol (LDL-C) levels. We hypothesized that the risk associated with high Lp(a) levels would largely be attenuated at low LDL-C levels. Methods and results: In 16 654 individuals from the EPIC-Norfolk prospective population study, and in 9448 individuals from the Copenhagen City Heart Study (CCHS) parallel statistical analyses were performed. Individuals were categorized according to their Lp(a) and LDL-C levels. Cut-offs were set at the 80th cohort percentile for Lp(a). Low-density lipoprotein cholesterol cut-offs were set at 2.5, 3.5, 4.5, and 5.5 mmol/L. Low-density lipoprotein cholesterol levels in the primary analyses were corrected for Lp(a)-derived LDL-C (LDL-Ccorr). Multivariable-adjusted hazard ratios were calculated for each category. The category with LDL-Ccorr <2.5 mmol/L and Lp(a) <80th cohort percentile was used as reference category. In the EPIC-Norfolk and CCHS cohorts, individuals with an Lp(a) ≥80th percentile were at increased CVD risk compared with those with Lp(a) <80th percentile for any LDL-Ccorr levels ≥2.5 mmol/L. In contrast, for LDL-Ccorr <2.5 mmol/L, the risk associated with elevated Lp(a) attenuated. However, there was no interaction between LDL-Ccorr and Lp(a) levels on CVD risk in either cohort. Conclusion: Lipoprotein(a) and LDL-C are independently associated with CVD risk. At LDL-C levels below <2.5 mmol/L, the risk associated with elevated Lp(a) attenuates in a primary prevention setting.


Subject(s)
Cardiovascular Diseases/blood , Cardiovascular Diseases/epidemiology , Cholesterol, LDL/blood , Lipoprotein(a)/blood , Cardiovascular Diseases/prevention & control , Female , Humans , Male , Middle Aged , Primary Prevention , Prospective Studies , Risk Assessment
13.
Eur Heart J ; 39(38): 3521-3527, 2018 10 07.
Article in English | MEDLINE | ID: mdl-29069365

ABSTRACT

A large number of cardiovascular events are not prevented by current therapeutic regimens. In search for additional, innovative strategies, immune cells have been recognized as key players contributing to atherosclerotic plaque progression and destabilization. Particularly the role of innate immune cells is of major interest, following the recent paradigm shift that innate immunity, long considered to be incapable of learning, does exhibit immunological memory mediated via epigenetic reprogramming. Compelling evidence shows that atherosclerotic risk factors promote immune cell migration by pre-activation of circulating innate immune cells. Innate immune cell activation via metabolic and epigenetic reprogramming perpetuates a systemic low-grade inflammatory state in cardiovascular disease (CVD) that is also common in other chronic inflammatory disorders. This opens a new therapeutic area in which metabolic or epigenetic modulation of innate immune cells may result in decreased systemic chronic inflammation, alleviating CVD, and its co-morbidities.


Subject(s)
Atherosclerosis/immunology , Cellular Reprogramming , Epigenesis, Genetic , Hematopoietic Stem Cells/immunology , Immunity, Innate , Inflammation/immunology , Monocytes/immunology , Animals , Atherosclerosis/diagnostic imaging , Chronic Disease , Humans , Immunologic Memory , Inflammation/diagnostic imaging , Multimodal Imaging
14.
Eur Heart J ; 38(20): 1584-1593, 2017 May 21.
Article in English | MEDLINE | ID: mdl-28329114

ABSTRACT

AIMS: Migration of monocytes into the arterial wall contributes to arterial inflammation and atherosclerosis progression. Since elevated low-density lipoprotein cholesterol (LDL-C) levels have been associated with activation of plasma monocytes, intensive LDL-C lowering may reverse these pro-inflammatory changes. Using proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibodies (mAbs) which selectively reduce LDL-C, we studied the impact of LDL-C lowering on monocyte phenotype and function in patients with familial hypercholesterolaemia (FH) not using statins due to statin-associated muscle symptoms. METHODS AND RESULTS: We assessed monocyte phenotype and function using flow cytometry and a trans-endothelial migration assay in FH patients (n = 22: LDL 6.8 ± 1.9 mmol/L) and healthy controls (n = 18, LDL 2.9 ± 0.8 mmol/L). Monocyte chemokine receptor (CCR) 2 expression was approximaterly three-fold higher in FH patients compared with controls. C-C chemokine receptor type 2 (CCR2) expression correlated significantly with plasma LDL-C levels (r = 0.709) and was positively associated with intracellular lipid accumulation. Monocytes from FH patients also displayed enhanced migratory capacity ex vivo. After 24 weeks of PCSK9 mAb treatment (n = 17), plasma LDL-C was reduced by 49%, which coincided with reduced intracellular lipid accumulation and reduced CCR2 expression. Functional relevance was substantiated by the reversal of enhanced migratory capacity of monocytes following PCSK9 mAb therapy. CONCLUSIONS: Monocytes of FH patients have a pro-inflammatory phenotype, which is dampened by LDL-C lowering by PCSK9 mAb therapy. LDL-C lowering was paralleled by reduced intracellular lipid accumulation, suggesting that LDL-C lowering itself is associated with anti-inflammatory effects on circulating monocytes.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Hyperlipoproteinemia Type II/drug therapy , Monocytes/immunology , Proprotein Convertase 9/immunology , Analysis of Variance , Antibodies, Monoclonal, Humanized , Case-Control Studies , Cholesterol, LDL/metabolism , Drug Administration Schedule , Female , Humans , Hyperlipoproteinemia Type II/immunology , Interleukin-10/biosynthesis , Lipid Metabolism/drug effects , Male , Middle Aged , Monocytes/drug effects , Monocytes/metabolism , Receptors, CCR2/drug effects , Receptors, CCR2/metabolism , Tumor Necrosis Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...