Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Exp Hematol ; : 104249, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38848876

ABSTRACT

Inherited bone marrow failure syndromes often result from pathogenic mutations in genes that are important for ribosome function, namely, Diamond-Blackfan anemia, Shwachman-Diamond syndrome, and dyskeratosis congenita. Germline mutations in SAMD9 are a frequent genetic lesion resulting in an inherited bone marrow failure syndrome with monosomy 7; some patients have severe multisystem syndromes that include myelodysplasia. The association of germline SAMD9 mutations and bone marrow failure is clear; however, to date, there is no reliable method to predict whether a novel SAMD9 mutation is pathogenic unless it is accompanied by an obvious family history and/or clinical syndrome. The difficulty with pathogenicity prediction is, in part, due to the incomplete understanding of the biological functions of SAMD9. We used a SAMD9-targeted, inducible CRISPRa system and RNA sequencing to better understand the global transcriptional changes that result from transcriptional manipulation of SAMD9. Supporting recent discoveries that SAMD9 acts as a ACNase specific for phenylalanine tRNA (tRNA-Phe), we confirmed with crosslinking and solid-phase purification that SAMD9 is an RNA binding protein and analyzed how overexpression of tRNA-Phe may reverse transcriptomic changes caused by SAMD9 activation. Our data show that overexpression of SAMD9 from the endogenous locus results in decreased cell proliferation, cell cycle progression, and global protein translation. When SAMD9 contains a gain-of-function mutation (p.E1136Q), these functional phenotypes are exacerbated but only partially rescued with tRNA-Phe overexpression, suggesting additional molecular actions of SAMD9. Additionally, we demonstrate that gene expression pathways important for ribosome biogenesis and MYC signaling are the most significantly impacted by SAMD9 overexpression.

3.
JCI Insight ; 9(2)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38258904

ABSTRACT

Lupus nephritis (LN) is a pathologically heterogenous autoimmune disease linked to end-stage kidney disease and mortality. Better therapeutic strategies are needed as only 30%-40% of patients completely respond to treatment. Noninvasive biomarkers of intrarenal inflammation may guide more precise approaches. Because urine collects the byproducts of kidney inflammation, we studied the urine proteomic profiles of 225 patients with LN (573 samples) in the longitudinal Accelerating Medicines Partnership in RA/SLE cohort. Urinary biomarkers of monocyte/neutrophil degranulation (i.e., PR3, S100A8, azurocidin, catalase, cathepsins, MMP8), macrophage activation (i.e., CD163, CD206, galectin-1), wound healing/matrix degradation (i.e., nidogen-1, decorin), and IL-16 characterized the aggressive proliferative LN classes and significantly correlated with histological activity. A decline of these biomarkers after 3 months of treatment predicted the 1-year response more robustly than proteinuria, the standard of care (AUC: CD206 0.91, EGFR 0.9, CD163 0.89, proteinuria 0.8). Candidate biomarkers were validated and provide potentially treatable targets. We propose these biomarkers of intrarenal immunological activity as noninvasive tools to diagnose LN and guide treatment and as surrogate endpoints for clinical trials. These findings provide insights into the processes involved in LN activity. This data set is a public resource to generate and test hypotheses and validate biomarkers.


Subject(s)
Lupus Nephritis , Humans , Lupus Nephritis/drug therapy , Proteomics , Proteinuria , Inflammation , Aggression
4.
bioRxiv ; 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38293222

ABSTRACT

Lupus nephritis (LN) is a frequent manifestation of systemic lupus erythematosus, and fewer than half of patients achieve complete renal response with standard immunosuppressants. Identifying non-invasive, blood-based pathologic immune alterations associated with renal injury could aid therapeutic decisions. Here, we used mass cytometry immunophenotyping of peripheral blood mononuclear cells in 145 patients with biopsy-proven LN and 40 healthy controls to evaluate the heterogeneity of immune activation in patients with LN and to identify correlates of renal parameters and treatment response. Unbiased analysis identified 3 immunologically distinct groups of patients with LN that were associated with different patterns of histopathology, renal cell infiltrates, urine proteomic profiles, and treatment response at one year. Patients with enriched circulating granzyme B+ T cells at baseline showed more severe disease and increased numbers of activated CD8 T cells in the kidney, yet they had the highest likelihood of treatment response. A second group characterized primarily by a high type I interferon signature had a lower likelihood of response to therapy, while a third group appeared immunologically inactive by immunophenotyping at enrollment but with chronic renal injuries. Main immune profiles could be distilled down to 5 simple cytometric parameters that recapitulate several of the associations, highlighting the potential for blood immune profiling to translate to clinically useful non-invasive metrics to assess immune-mediated disease in LN.

5.
Nature ; 619(7970): 585-594, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37468583

ABSTRACT

Understanding kidney disease relies on defining the complexity of cell types and states, their associated molecular profiles and interactions within tissue neighbourhoods1. Here we applied multiple single-cell and single-nucleus assays (>400,000 nuclei or cells) and spatial imaging technologies to a broad spectrum of healthy reference kidneys (45 donors) and diseased kidneys (48 patients). This has provided a high-resolution cellular atlas of 51 main cell types, which include rare and previously undescribed cell populations. The multi-omic approach provides detailed transcriptomic profiles, regulatory factors and spatial localizations spanning the entire kidney. We also define 28 cellular states across nephron segments and interstitium that were altered in kidney injury, encompassing cycling, adaptive (successful or maladaptive repair), transitioning and degenerative states. Molecular signatures permitted the localization of these states within injury neighbourhoods using spatial transcriptomics, while large-scale 3D imaging analysis (around 1.2 million neighbourhoods) provided corresponding linkages to active immune responses. These analyses defined biological pathways that are relevant to injury time-course and niches, including signatures underlying epithelial repair that predicted maladaptive states associated with a decline in kidney function. This integrated multimodal spatial cell atlas of healthy and diseased human kidneys represents a comprehensive benchmark of cellular states, neighbourhoods, outcome-associated signatures and publicly available interactive visualizations.


Subject(s)
Gene Expression Profiling , Kidney Diseases , Kidney , Single-Cell Analysis , Transcriptome , Humans , Cell Nucleus/genetics , Kidney/cytology , Kidney/injuries , Kidney/metabolism , Kidney/pathology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Transcriptome/genetics , Case-Control Studies , Imaging, Three-Dimensional
6.
Exp Dermatol ; 31(7): 1036-1047, 2022 07.
Article in English | MEDLINE | ID: mdl-35213752

ABSTRACT

Psoriasis vulgaris is an inflammatory skin disease that affects 2%-3% of the population worldwide. One of the major challenges in discovering novel therapies is the poor translatability of animal models to human disease. Therefore, it is imperative to develop human preclinical models of psoriasis that are amenable to pharmacological intervention. Here, we report a 3-D reconstituted human epidermis (RHE) culture system treated with cytokines commonly associated with psoriasis (TNFα, IL-17A and IL-22) that reproduced some key features of the human disease. The effects on epidermal morphology, gene transcription and cytokine production, which are dysregulated in psoriasis were assessed. Certain morphological features of psoriatic epidermis were evident in cytokine-stimulated RHEs, including hypogranulosis and parakeratosis. In addition, RHEs responded to a cytokine mix in a dose-dependent manner by expressing genes and proteins associated with impaired keratinocyte differentiation (keratin 10/K10, loricrin), innate immune responses (S100A7, DEFB4, elafin) and inflammation (IL-1α, IL-6, IL-8, IL-10, IL-12/23p40, IL-36γ, GM-CSF and IFNγ) typical of psoriasis. These disease-relevant changes in morphology, gene transcription and cytokine production were robustly attenuated by pharmacologically blocking TNFα/IL-17A-induced NF-κB activation with IKK-2 inhibitor IV. Conversely, inhibition of IL-22-induced JAK1 signalling with ABT-317 strongly attenuated morphological features of the disease but had no effect on NFκB-dependent cytokine production, suggesting distinct mechanisms of action by the cytokines driving psoriasis. These data support the use of cytokine-induced RHE models for identifying and targeting keratinocyte signalling pathways important for disease progression and may provide translational insights into novel keratinocyte mechanisms for novel psoriasis therapies.


Subject(s)
Interleukin-17 , Psoriasis , Animals , Humans , Interleukin-17/metabolism , Keratinocytes/metabolism , NF-kappa B/metabolism , Psoriasis/metabolism , Skin/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology
7.
Sci Signal ; 14(689)2021 06 29.
Article in English | MEDLINE | ID: mdl-34131072

ABSTRACT

Capping of viral messenger RNAs is essential for efficient translation, for virus replication, and for preventing detection by the host cell innate response system. The SARS-CoV-2 genome encodes the 2'-O-methyltransferase nsp16, which, when bound to the coactivator nsp10, uses S-adenosylmethionine (SAM) as a donor to transfer a methyl group to the first ribonucleotide of the mRNA in the final step of viral mRNA capping. Here, we provide biochemical and structural evidence that this reaction requires divalent cations, preferably Mn2+, and a coronavirus-specific four-residue insert. We determined the x-ray structures of the SARS-CoV-2 2'-O-methyltransferase (the nsp16-nsp10 heterodimer) in complex with its reaction substrates, products, and divalent metal cations. These structural snapshots revealed that metal ions and the insert stabilize interactions between the capped RNA and nsp16, resulting in the precise alignment of the ribonucleotides in the active site. Comparison of available structures of 2'-O-methyltransferases with capped RNAs from different organisms revealed that the four-residue insert unique to coronavirus nsp16 alters the backbone conformation of the capped RNA in the binding groove, thereby promoting catalysis. This insert is highly conserved across coronaviruses, and its absence in mammalian methyltransferases makes this region a promising site for structure-guided drug design of selective coronavirus inhibitors.


Subject(s)
COVID-19/virology , RNA Caps/metabolism , RNA, Viral/metabolism , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism , Amino Acid Sequence , Catalytic Domain , Crystallography, X-Ray , Humans , Manganese/metabolism , Methylation , Methyltransferases/chemistry , Methyltransferases/genetics , Methyltransferases/metabolism , Models, Molecular , Nucleic Acid Conformation , RNA Caps/chemistry , RNA Caps/genetics , RNA Stability , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Viral/chemistry , RNA, Viral/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , S-Adenosylmethionine/chemistry , S-Adenosylmethionine/metabolism , SARS-CoV-2/genetics , Signal Transduction , Substrate Specificity , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics
8.
Cell Rep Med ; 2(5): 100287, 2021 05 18.
Article in English | MEDLINE | ID: mdl-33969320

ABSTRACT

Mechanisms underlying severe coronavirus disease 2019 (COVID-19) disease remain poorly understood. We analyze several thousand plasma proteins longitudinally in 306 COVID-19 patients and 78 symptomatic controls, uncovering immune and non-immune proteins linked to COVID-19. Deconvolution of our plasma proteome data using published scRNA-seq datasets reveals contributions from circulating immune and tissue cells. Sixteen percent of patients display reduced inflammation yet comparably poor outcomes. Comparison of patients who died to severely ill survivors identifies dynamic immune-cell-derived and tissue-associated proteins associated with survival, including exocrine pancreatic proteases. Using derived tissue-specific and cell-type-specific intracellular death signatures, cellular angiotensin-converting enzyme 2 (ACE2) expression, and our data, we infer whether organ damage resulted from direct or indirect effects of infection. We propose a model in which interactions among myeloid, epithelial, and T cells drive tissue damage. These datasets provide important insights and a rich resource for analysis of mechanisms of severe COVID-19 disease.

9.
mBio ; 12(1)2021 02 09.
Article in English | MEDLINE | ID: mdl-33563836

ABSTRACT

Topoisomerases regulate higher-order chromatin structures through the transient breaking and religating of one or both strands of the phosphodiester backbone of duplex DNA. TOP2ß is a type II topoisomerase that induces double-strand DNA breaks at topologically associated domains (TADS) to relieve torsional stress arising during transcription or replication. TADS are anchored by CCCTC-binding factor (CTCF) and SMC1 cohesin proteins in complexes with TOP2ß. Upon DNA cleavage, a covalent intermediate DNA-TOP2ß (TOP2ßcc) is transiently generated to allow for strand passage. The tyrosyl-DNA phosphodiesterase TDP2 can resolve TOP2ßcc, but failure to do so quickly can lead to long-lasting DNA breaks. Given the role of CTCF/SMC1 proteins in the human papillomavirus (HPV) life cycle, we investigated whether TOP2ß proteins contribute to HPV pathogenesis. Our studies demonstrated that levels of both TOP2ß and TDP2 were substantially increased in cells with high-risk HPV genomes, and this correlated with large amounts of DNA breaks. Knockdown of TOP2ß with short hairpin RNAs (shRNAs) reduced DNA breaks by over 50% as determined through COMET assays. Furthermore, this correlated with substantially reduced formation of repair foci such as phosphorylated H2AX (γH2AX), phosphorylated CHK1 (pCHK1), and phosphorylated SMC1 (pSMC1) indicative of impaired activation of DNA damage repair pathways. Importantly, knockdown of TOP2ß also blocked HPV genome replication. Our previous studies demonstrated that CTCF/SMC1 factors associate with HPV genomes at sites in the late regions of HPV31, and these correspond to regions that also bind TOP2ß. This study identifies TOP2ß as responsible for enhanced levels of DNA breaks in HPV-positive cells and as a regulator of viral replication.IMPORTANCE High-risk human papillomaviruses (HPVs) infect epithelial cells and induce viral genome amplification upon differentiation. HPV proteins activate DNA damage repair pathways by inducing high numbers of DNA breaks in both viral and cellular DNAs. This activation is required for HPV genome replication. TOP2ß is a type II topoisomerase that induces double-strand DNA breaks at topologically associated domains (TADS) to relieve torsional stress arising during transcription or replication. Our studies demonstrate that TOP2ß levels are increased in HPV-positive cells and that this is required for HPV replication. Importantly, our studies further show that knockdown of TOP2ß reduces the number of breaks by over 50% in HPV-positive cells and that this correlates with substantially impaired activation of DNA repair pathways. This study identifies a critical mechanism by which HPV replication is regulated by the topoisomerase TOP2ß through DNA break formation.


Subject(s)
DNA Breaks, Double-Stranded , DNA Topoisomerases, Type II/genetics , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Papillomaviridae/physiology , Virus Replication , Cells, Cultured , Foreskin/cytology , Humans , Keratinocytes/virology , Male
10.
Physiol Genomics ; 53(1): 1-11, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33197228

ABSTRACT

Comprehensive and spatially mapped molecular atlases of organs at a cellular level are a critical resource to gain insights into pathogenic mechanisms and personalized therapies for diseases. The Kidney Precision Medicine Project (KPMP) is an endeavor to generate three-dimensional (3-D) molecular atlases of healthy and diseased kidney biopsies by using multiple state-of-the-art omics and imaging technologies across several institutions. Obtaining rigorous and reproducible results from disparate methods and at different sites to interrogate biomolecules at a single-cell level or in 3-D space is a significant challenge that can be a futile exercise if not well controlled. We describe a "follow the tissue" pipeline for generating a reliable and authentic single-cell/region 3-D molecular atlas of human adult kidney. Our approach emphasizes quality assurance, quality control, validation, and harmonization across different omics and imaging technologies from sample procurement, processing, storage, shipping to data generation, analysis, and sharing. We established benchmarks for quality control, rigor, reproducibility, and feasibility across multiple technologies through a pilot experiment using common source tissue that was processed and analyzed at different institutions and different technologies. A peer review system was established to critically review quality control measures and the reproducibility of data generated by each technology before their being approved to interrogate clinical biopsy specimens. The process established economizes the use of valuable biopsy tissue for multiomics and imaging analysis with stringent quality control to ensure rigor and reproducibility of results and serves as a model for precision medicine projects across laboratories, institutions and consortia.


Subject(s)
Guidelines as Topic , Kidney/pathology , Precision Medicine , Biopsy , Humans , Reproducibility of Results
11.
bioRxiv ; 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33173871

ABSTRACT

COVID-19 has caused over 1 million deaths globally, yet the cellular mechanisms underlying severe disease remain poorly understood. By analyzing several thousand plasma proteins in 306 COVID-19 patients and 78 symptomatic controls over serial timepoints using two complementary approaches, we uncover COVID-19 host immune and non-immune proteins not previously linked to this disease. Integration of plasma proteomics with nine published scRNAseq datasets shows that SARS-CoV-2 infection upregulates monocyte/macrophage, plasmablast, and T cell effector proteins. By comparing patients who died to severely ill patients who survived, we identify dynamic immunomodulatory and tissue-associated proteins associated with survival, providing insights into which host responses are beneficial and which are detrimental to survival. We identify intracellular death signatures from specific tissues and cell types, and by associating these with angiotensin converting enzyme 2 (ACE2) expression, we map tissue damage associated with severe disease and propose which damage results from direct viral infection rather than from indirect effects of illness. We find that disease severity in lung tissue is driven by myeloid cell phenotypes and cell-cell interactions with lung epithelial cells and T cells. Based on these results, we propose a model of immune and epithelial cell interactions that drive cell-type specific and tissue-specific damage in severe COVID-19.

12.
Virology ; 547: 27-34, 2020 08.
Article in English | MEDLINE | ID: mdl-32560902

ABSTRACT

The mechanisms regulating viral pathogenesis of human papillomavirus (HPV) associated oropharyngeal squamous cell cancers (OPSCC) are not well understood. In the cervix, activation of DNA damage repair pathways is critical for viral replication but little is known about their role in OPSCC. APOBEC factors have been shown to be increased in OPSCC but the significance of this is unclear. We therefore examined activation of DNA damage and APOBEC factors in HPV-induced OPSCC. Our studies show significantly increased levels of pCHK1, FANCD2, BRCA1, RAD51, pSMC1 and γH2AX foci in HPV-positive samples as compared to HPV-negative while the ATM effector kinase, pCHK2, was not increased. Similar differences were observed when the levels of proteins were examined in OPSCC cell lines. In contrast, the levels of APOBEC3B and 3A were found to be similar in both HPV-positive and -negative OPSCC. Our studies suggest members of ATR pathway and FANCD2 may be important in HPV-induced OPSCC.


Subject(s)
Neoplasms, Squamous Cell/metabolism , Oropharyngeal Neoplasms/metabolism , Papillomaviridae/physiology , Papillomavirus Infections/metabolism , ATPases Associated with Diverse Cellular Activities/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , Acid Anhydride Hydrolases/genetics , Acid Anhydride Hydrolases/metabolism , Checkpoint Kinase 1/genetics , Checkpoint Kinase 1/metabolism , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , DNA Repair , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Fanconi Anemia Complementation Group D2 Protein/genetics , Fanconi Anemia Complementation Group D2 Protein/metabolism , Humans , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism , Neoplasms, Squamous Cell/genetics , Neoplasms, Squamous Cell/virology , Oropharyngeal Neoplasms/genetics , Oropharyngeal Neoplasms/virology , Papillomaviridae/genetics , Papillomavirus Infections/genetics , Papillomavirus Infections/virology
13.
Chest ; 158(1): 350-358, 2020 07.
Article in English | MEDLINE | ID: mdl-32173491

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) adversely affects patient's exercise capacity in interstitial lung disease (ILD). The impact of pulmonary vascular and right ventricular (RV) dysfunction, however, has traditionally been believed to be mild and clinically relevant principally in advanced lung disease states. RESEARCH QUESTION: The aim of this study was to evaluate the relative contributions of pulmonary mechanics, pulmonary vascular function, and RV function to the ILD exercise limit. STUDY DESIGN AND METHODS: Forty-nine patients with ILD who underwent resting right heart catheterization followed by invasive exercise testing were evaluated. Patients with PH at rest (ILD + rPH) and with PH diagnosed exclusively during exercise (ILD + ePH) were contrasted with ILD patients without PH (ILD non-PH). RESULTS: Peak oxygen consumption was reduced in ILD + rPH (61 ± 10% predicted) and ILD + ePH (67 ± 13% predicted) compared with ILD non-PH (81 ± 16% predicted; P < .001 and P = .016, respectively). Each ILD hemodynamic phenotype presented distinct patterns of dynamic changes of pulmonary vascular compliance relative to pulmonary vascular resistance from rest to peak exercise. Peak RV stroke work index was increased in ILD + ePH (24.7 ± 8.2 g/m2 per beat) and ILD + rPH (30.9 ± 6.1 g/m2 per beat) compared with ILD non-PH (18.3 ± 6.4 g/m2 per beat; P = .020 and P = .014). Ventilatory reserve was reduced in ILD + rPH compared with the other groups at the anaerobic threshold, but it was similar between ILD + ePH and ILD non-PH at the anaerobic threshold (0.32 ± 0.13 vs 0.30 ± 0.11; P = .921) and at peak exercise (0.70 ± 0.17 vs 0.73 ± 0.24; P = .872). INTERPRETATION: ILD with resting and exercise PH is associated with increased exercise RV work, reduced pulmonary vascular reserve, and reduced peak oxygen consumption. The findings highlight the role of pulmonary vascular and RV burden to ILD exercise limit.


Subject(s)
Exercise Tolerance/physiology , Hypertension, Pulmonary/complications , Lung Diseases, Interstitial/complications , Lung Diseases, Interstitial/physiopathology , Ventricular Dysfunction, Right/complications , Adult , Aged , Case-Control Studies , Exercise , Exercise Test , Female , Humans , Hypertension, Pulmonary/physiopathology , Male , Middle Aged , Oxygen Consumption , Respiratory Mechanics , Vascular Resistance , Ventricular Dysfunction, Right/physiopathology
14.
JCI Insight ; 5(6)2020 03 26.
Article in English | MEDLINE | ID: mdl-32107344

ABSTRACT

To define cellular mechanisms underlying kidney function and failure, the KPMP analyzes biopsy tissue in a multicenter research network to build cell-level process maps of the kidney. This study aimed to establish a single cell RNA sequencing strategy to use cell-level transcriptional profiles from kidney biopsies in KPMP to define molecular subtypes in glomerular diseases. Using multiple sources of adult human kidney reference tissue samples, 22,268 single cell profiles passed KPMP quality control parameters. Unbiased clustering resulted in 31 distinct cell clusters that were linked to kidney and immune cell types using specific cell markers. Focusing on endothelial cell phenotypes, in silico and in situ hybridization methods assigned 3 discrete endothelial cell clusters to distinct renal vascular beds. Transcripts defining glomerular endothelial cells (GEC) were evaluated in biopsies from patients with 10 different glomerular diseases in the NEPTUNE and European Renal cDNA Bank (ERCB) cohort studies. Highest GEC scores were observed in patients with focal segmental glomerulosclerosis (FSGS). Molecular endothelial signatures suggested 2 distinct FSGS patient subgroups with α-2 macroglobulin (A2M) as a key downstream mediator of the endothelial cell phenotype. Finally, glomerular A2M transcript levels associated with lower proteinuria remission rates, linking endothelial function with long-term outcome in FSGS.


Subject(s)
Endothelial Cells/pathology , Gene Expression Profiling/methods , Glomerulosclerosis, Focal Segmental/pathology , Biomarkers/analysis , Humans
15.
Nat Commun ; 11(1): 164, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31919360

ABSTRACT

Host dependency factors that are required for influenza A virus infection may serve as therapeutic targets as the virus is less likely to bypass them under drug-mediated selection pressure. Previous attempts to identify host factors have produced largely divergent results, with few overlapping hits across different studies. Here, we perform a genome-wide CRISPR/Cas9 screen and devise a new approach, meta-analysis by information content (MAIC) to systematically combine our results with prior evidence for influenza host factors. MAIC out-performs other meta-analysis methods when using our CRISPR screen as validation data. We validate the host factors, WDR7, CCDC115 and TMEM199, demonstrating that these genes are essential for viral entry and regulation of V-type ATPase assembly. We also find that CMTR1, a human mRNA cap methyltransferase, is required for efficient viral cap snatching and regulation of a cell autonomous immune response, and provides synergistic protection with the influenza endonuclease inhibitor Xofluza.


Subject(s)
Genetic Predisposition to Disease/genetics , Host-Pathogen Interactions/genetics , Influenza A virus/pathogenicity , Influenza, Human/genetics , Influenza, Human/pathology , A549 Cells , Adaptor Proteins, Signal Transducing/genetics , Antiviral Agents/pharmacology , CRISPR-Cas Systems , Cell Line , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Dibenzothiepins , Genome-Wide Association Study , Humans , Membrane Proteins/genetics , Methyltransferases/metabolism , Morpholines , Nerve Tissue Proteins/genetics , Oxazines/pharmacology , Pyridines/pharmacology , Pyridones , Thiepins/pharmacology , Triazines/pharmacology , Vacuolar Proton-Translocating ATPases/metabolism , Virus Internalization
16.
Arthritis Care Res (Hoboken) ; 72(2): 233-242, 2020 02.
Article in English | MEDLINE | ID: mdl-31502417

ABSTRACT

The Accelerating Medicines Partnership (AMP) Lupus Network was established as a partnership between the National Institutes of Health, pharmaceutical companies, nonprofit stakeholders, and lupus investigators across multiple academic centers to apply high-throughput technologies to the analysis of renal tissue, urine, and blood from patients with lupus nephritis (LN). The AMP network provides publicly accessible data to the community with the goal of generating new scientific hypotheses and improving diagnostic and therapeutic tools so as to improve disease outcomes. We present here a description of the structure of the AMP Lupus Network and a summary of the preliminary results from the phase 1 studies. The successful completion of phase 1 sets the stage for analysis of a large cohort of LN samples in phase 2 and provides a model for establishing similar discovery cohorts.


Subject(s)
Academic Medical Centers/organization & administration , Clinical Trials, Phase I as Topic/methods , Drug Industry/organization & administration , Lupus Nephritis/metabolism , National Institutes of Health (U.S.)/organization & administration , Preliminary Data , Public-Private Sector Partnerships/organization & administration , Biomarkers/metabolism , Humans , Lupus Nephritis/epidemiology , Lupus Nephritis/genetics , Sequence Analysis, RNA/methods , United States/epidemiology
18.
Semin Arthritis Rheum ; 49(3): 396-404, 2019 12.
Article in English | MEDLINE | ID: mdl-31277928

ABSTRACT

BACKGROUND: Interstitial fibrosis and tubular atrophy (IFTA) and vascular injury are frequent histologic features of lupus nephritis renal biopsies, but their clinical correlates and prognostic value are not well understood. This cohort study investigated demographic, clinical and laboratory characteristics, and outcomes, associated with IFTA and vascular injury in lupus nephritis. METHODS: Reports of all renal biopsies performed at an academic medical center (1990-2017) with WHO/ISN/RPS Class II-V lupus nephritis were reviewed. Demographics, clinical variables and labs at biopsy, treatment, and date of death were collected. Additional data from the U.S. Renal Data System (USRDS) provided dates of ESRD and death after ESRD. Multivariable regression analyses identified demographic and clinical factors associated with each histologic finding. Cumulative incidence functions and multivariable Cox proportional hazard models estimated the risk of progression to ESRD and death. RESULTS: Within 202 initial biopsies, IFTA was associated with the patient's SLICC/ACR damage index (without renal domain) and serum creatinine, and vascular injury was associated with serum creatinine in multivariable models. In Cox regression models adjusting for age, sex, race, serum creatinine, calendar year, and biopsy class, moderate/severe IFTA was associated with elevated ESRD (HRSD 5.18, 95% CI 2.53, 10.59) and death (HR 4.19, 95%CI 1.27, 13.81). After adjustment for age, sex and race, moderate/severe vascular injury was associated with ESRD (HRSD 2.13, 95% CI 1.21, 3.75) and but this relationship was not significant after adjustment for serum creatinine and calendar year. CONCLUSIONS: IFTA is a strong predictor of ESRD and death, even in proliferative nephritis, and a risk factor for poor outcomes independent of class. Vascular injury is a strong predictor of prognosis, but not independent of serum creatinine and class. The prognostic value of these lesions calls for consideration when determining treatment for lupus nephritis.


Subject(s)
Biopsy/methods , Kidney Tubules/pathology , Lupus Nephritis/pathology , Renal Artery/pathology , Adult , Atrophy/pathology , Disease Progression , Female , Fibrosis/pathology , Humans , Male , Retrospective Studies , Risk Factors
19.
Nat Immunol ; 20(7): 902-914, 2019 07.
Article in English | MEDLINE | ID: mdl-31209404

ABSTRACT

Lupus nephritis is a potentially fatal autoimmune disease for which the current treatment is ineffective and often toxic. To develop mechanistic hypotheses of disease, we analyzed kidney samples from patients with lupus nephritis and from healthy control subjects using single-cell RNA sequencing. Our analysis revealed 21 subsets of leukocytes active in disease, including multiple populations of myeloid cells, T cells, natural killer cells and B cells that demonstrated both pro-inflammatory responses and inflammation-resolving responses. We found evidence of local activation of B cells correlated with an age-associated B-cell signature and evidence of progressive stages of monocyte differentiation within the kidney. A clear interferon response was observed in most cells. Two chemokine receptors, CXCR4 and CX3CR1, were broadly expressed, implying a potentially central role in cell trafficking. Gene expression of immune cells in urine and kidney was highly correlated, which would suggest that urine might serve as a surrogate for kidney biopsies.


Subject(s)
Kidney/immunology , Lupus Nephritis/immunology , Biomarkers , Biopsy , Cluster Analysis , Computational Biology/methods , Epithelial Cells/metabolism , Flow Cytometry , Gene Expression Profiling , Gene Expression Regulation , Humans , Immunophenotyping , Interferons/metabolism , Kidney/metabolism , Kidney/pathology , Leukocytes/immunology , Leukocytes/metabolism , Lupus Nephritis/genetics , Lupus Nephritis/metabolism , Lupus Nephritis/pathology , Lymphocytes/immunology , Lymphocytes/metabolism , Molecular Sequence Annotation , Myeloid Cells/immunology , Myeloid Cells/metabolism , Single-Cell Analysis , Transcriptome
20.
Sci Adv ; 5(1): eaau9223, 2019 01.
Article in English | MEDLINE | ID: mdl-30746468

ABSTRACT

Specialized immune cell subsets are involved in autoimmune disease, cancer immunity, and infectious disease through a diverse range of functions mediated by overlapping pathways and signals. However, subset-specific responses may not be detectable in analyses of whole blood samples, and no efficient approach for profiling cell subsets at high throughput from small samples is available. We present a low-input microfluidic system for sorting immune cells into subsets and profiling their gene expression. We validate the system's technical performance against standard subset isolation and library construction protocols and demonstrate the importance of subset-specific profiling through in vitro stimulation experiments. We show the ability of this integrated platform to identify subset-specific disease signatures by profiling four immune cell subsets in blood from patients with systemic lupus erythematosus (SLE) and matched control subjects. The platform has the potential to make multiplexed subset-specific analysis routine in many research laboratories and clinical settings.


Subject(s)
Flow Cytometry/methods , Lupus Erythematosus, Systemic/genetics , Lymphocytes , Microfluidics/instrumentation , Microfluidics/methods , Monocytes , Single-Cell Analysis/methods , Humans , Lipopolysaccharide Receptors/metabolism , Lupus Erythematosus, Systemic/blood , RNA-Seq/methods , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL