Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 18(12): 2457-2463, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38047879

ABSTRACT

FeII/α-ketoglutarate-dependent dioxygenases (Fe/αKG) make up a large enzyme family that functionalize C-H bonds on diverse organic substrates. Although Fe/αKG homologues catalyze an array of chemically useful reactions, hydroxylation typically predominates. Microalgal DabC uniquely forms a novel C-C bond to construct the bioactive pyrrolidine ring in domoic acid biosynthesis; however, we have identified that this kainoid synthase exclusively performs a stereospecific hydroxylation reaction on its cis substrate regioisomer. Mechanistic and kinetic analyses with native and alternative substrates identified a 20-fold rate increase in DabC radical cyclization over ß-hydroxylation with no observable 1,5-hydrogen atom transfer. Moreover, this dual activity was conserved among macroalgal RadC1 and KabC homologues and provided insight into substrate recognition and reactivity trends. Investigation of this substrate-dependent chemistry improves our understanding of kainoid synthases and their biocatalytic application.


Subject(s)
Mixed Function Oxygenases , Mixed Function Oxygenases/metabolism , Hydroxylation , Cyclization , Catalysis , Biocatalysis
2.
J Am Chem Soc ; 144(21): 9372-9379, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35583956

ABSTRACT

Harmful cyanobacterial blooms (cyanoHABs) cause recurrent toxic events in global watersheds. Although public health agencies monitor the causal toxins of most cyanoHABs and scientists in the field continue developing precise detection and prediction tools, the potent anticholinesterase neurotoxin, guanitoxin, is not presently environmentally monitored. This is largely due to its incompatibility with widely employed analytical methods and instability in the environment, despite guanitoxin being among the most lethal cyanotoxins. Here, we describe the guanitoxin biosynthesis gene cluster and its rigorously characterized nine-step metabolic pathway from l-arginine in the cyanobacterium Sphaerospermopsis torques-reginae ITEP-024. Through environmental sequencing data sets, guanitoxin (gnt) biosynthetic genes are repeatedly detected and expressed in municipal freshwater bodies that have undergone past toxic events. Knowledge of the genetic basis of guanitoxin biosynthesis now allows for environmental, biosynthetic gene monitoring to establish the global scope of this neurotoxic organophosphate.


Subject(s)
Cyanobacteria , Cyanobacteria/genetics , Cyanobacteria/metabolism , Cyanobacteria Toxins , Environmental Monitoring , Fresh Water , Multigene Family
3.
Nat Struct Mol Biol ; 27(4): 382-391, 2020 04.
Article in English | MEDLINE | ID: mdl-32251414

ABSTRACT

The bestrophin family of calcium (Ca2+)-activated chloride (Cl-) channels, which mediate the influx and efflux of monovalent anions in response to the levels of intracellular Ca2+, comprises four members in mammals (bestrophin 1-4). Here we report cryo-EM structures of bovine bestrophin-2 (bBest2) bound and unbound by Ca2+ at 2.4- and 2.2-Å resolution, respectively. The bBest2 structure highlights four previously underappreciated pore-lining residues specifically conserved in Best2 but not in Best1, illustrating the differences between these paralogs. Structure-inspired electrophysiological analysis reveals that, although the channel is sensitive to Ca2+, it has substantial Ca2+-independent activity for Cl-, reflecting the opening at the cytoplasmic restriction of the ion conducting pathway even when Ca2+ is absent. Moreover, the ion selectivity of bBest2 is controlled by multiple residues, including those involved in gating.


Subject(s)
Bestrophins/ultrastructure , Chloride Channels/ultrastructure , Protein Conformation , Animals , Bestrophins/chemistry , Bestrophins/genetics , Calcium/chemistry , Cattle , Chloride Channels/chemistry , Chloride Channels/genetics , Cryoelectron Microscopy , Cytoplasm/chemistry , Cytoplasm/genetics , Cytoplasm/ultrastructure , Humans , Ion Channel Gating/genetics , Protein Binding/genetics , Signal Transduction
4.
Sci Rep ; 9(1): 19026, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31836750

ABSTRACT

BEST1 is a Ca2+-activated Cl- channel predominantly expressed in retinal pigment epithelium (RPE), and over 250 genetic mutations in the BEST1 gene have been identified to cause retinal degenerative disorders generally known as bestrophinopathies. As most BEST1 mutations are autosomal dominant, it is of great biomedical interest to determine their disease-causing mechanisms and the therapeutic potential of gene therapy. Here, we characterized six Best vitelliform macular dystrophy (BVMD)-associated BEST1 dominant mutations by documenting the patients' phenotypes, examining the subcellular localization of endogenous BEST1 and surface Ca2+-dependent Cl- currents in patient-derived RPEs, and analyzing the functional influences of these mutations on BEST1 in HEK293 cells. We found that all six mutations are loss-of-function with different levels and types of deficiencies, and further demonstrated the restoration of Ca2+-dependent Cl- currents in patient-derived RPE cells by WT BEST1 gene supplementation. Importantly, BEST1 dominant and recessive mutations are both rescuable at a similar efficacy by gene augmentation via adeno-associated virus (AAV), providing a proof-of-concept for curing the vast majority of bestrophinopathies.


Subject(s)
Bestrophins/genetics , Genes, Dominant , Mutation/genetics , Retinal Pigment Epithelium/metabolism , Adult , Child , Female , Humans , Male , Middle Aged , Phenotype , Retinal Pigment Epithelium/diagnostic imaging , Vitelliform Macular Dystrophy/diagnostic imaging , Vitelliform Macular Dystrophy/genetics , Young Adult
5.
Commun Biol ; 2: 240, 2019.
Article in English | MEDLINE | ID: mdl-31263784

ABSTRACT

Mutations of human BEST1, encoding a Ca2+-activated Cl- channel (hBest1), cause macular degenerative disorders. Best1 homolog structures reveal an evolutionarily conserved channel architecture highlighted by two landmark restrictions (named the "neck" and "aperture", respectively) in the ion conducting pathway, suggesting a unique dual-switch gating mechanism, which, however, has not been characterized well. Using patch clamp and crystallography, we demonstrate that both the neck and aperture in hBest1 are Ca2+-dependent gates essential for preventing channel leakage resulting from Ca2+-independent, spontaneous gate opening. Importantly, three patient-derived mutations (D203A, I205T and Y236C) lead to Ca2+-independent leakage and elevated Ca2+-dependent anion currents due to enhanced opening of the gates. Moreover, we identify a network of residues critically involved in gate operation. Together, our results suggest an indispensable role of the neck and aperture of hBest1 for channel gating, and uncover disease-causing mechanisms of hBest1 gain-of-function mutations.


Subject(s)
Bestrophins/physiology , Calcium/metabolism , Chloride Channels/physiology , Gain of Function Mutation , Ion Channel Gating/physiology , Bestrophins/chemistry , Crystallography , HEK293 Cells , Humans , Patch-Clamp Techniques , Structure-Activity Relationship
6.
J Vis Exp ; (138)2018 08 02.
Article in English | MEDLINE | ID: mdl-30124653

ABSTRACT

The human genome encodes four bestrophin paralogs, namely BEST1, BEST2, BEST3, and BEST4. BEST1, encoded by the BEST1 gene, is a Ca2+-activated Cl- channel (CaCC) predominantly expressed in retinal pigment epithelium (RPE). The physiological and pathological significance of BEST1 is highlighted by the fact that over 200 distinct mutations in the BEST1 gene have been genetically linked to a spectrum of at least five retinal degenerative disorders, such as Best vitelliform macular dystrophy (Best disease). Therefore, understanding the biophysics of bestrophin channels at the single-molecule level holds tremendous significance. However, obtaining purified mammalian ion channels is often a challenging task. Here, we report a protocol for the expression of mammalian bestrophin proteins with the BacMam baculovirus gene transfer system and their purification by affinity and size-exclusion chromatography. The purified proteins have the potential to be utilized in subsequent functional and structural analyses, such as electrophysiological recording in lipid bilayers and crystallography. Importantly, this pipeline can be adapted to study the functions and structures of other ion channels.


Subject(s)
Bestrophins/metabolism , Ion Channels/metabolism , Animals , Humans
7.
Mol Neurobiol ; 55(2): 1795-1813, 2018 02.
Article in English | MEDLINE | ID: mdl-29168048

ABSTRACT

Lipids are essential components of the nervous system. However, the functions of very long-chain fatty acids (VLC-FA; ≥ 28 carbons) in the brain are unknown. The enzyme ELOngation of Very Long-chain fatty acids-4 (ELOVL4) catalyzes the rate-limiting step in the biosynthesis of VLC-FA (Agbaga et al., Proc Natl Acad Sci USA 105(35): 12843-12848, 2008; Logan et al., J Lipid Res 55(4): 698-708, 2014), which we identified in the brain as saturated fatty acids (VLC-SFA). Homozygous mutations in ELOVL4 cause severe neuropathology in humans (Ozaki et al., JAMA Neurol 72(7): 797-805, 2015; Mir et al., BMC Med Genet 15: 25, 2014; Cadieux-Dion et al., JAMA Neurol 71(4): 470-475, 2014; Bourassa et al., JAMA Neurol 72(8): 942-943, 2015; Aldahmesh et al., Am J Hum Genet 89(6): 745-750, 2011) and are post-natal lethal in mice (Cameron et al., Int J Biol Sci 3(2): 111-119, 2007; Li et al., Int J Biol Sci 3(2): 120-128, 2007; McMahon et al., Molecular Vision 13: 258-272, 2007; Vasireddy et al., Hum Mol Genet 16(5): 471-482, 2007) from dehydration due to loss of VLC-SFA that comprise the skin permeability barrier. Double transgenic mice with homozygous knock-in of the Stargardt-like macular dystrophy (STDG3; 797-801_AACTT) mutation of Elovl4 with skin-specific rescue of wild-type Elovl4 expression (S + Elovl4 mut/mut mice) develop seizures by P19 and die by P21. Electrophysiological analyses of hippocampal slices showed aberrant epileptogenic activity in S + Elovl4 mut/mut mice. FM1-43 dye release studies showed that synapses made by cultured hippocampal neurons from S + Elovl4 mut/mut mice exhibited accelerated synaptic release kinetics. Supplementation of VLC-SFA to cultured hippocampal neurons from mutant mice rescued defective synaptic release to wild-type rates. Together, these studies establish a critical, novel role for ELOVL4 and its VLC-SFA products in regulating synaptic release kinetics and epileptogenesis. Future studies aimed at understanding the molecular mechanisms by which VLC-SFA regulate synaptic function may provide new targets for improved seizure therapies.


Subject(s)
Eye Proteins/metabolism , Fatty Acids/metabolism , Hippocampus/metabolism , Membrane Proteins/metabolism , Mutation , Seizures/metabolism , Animals , Disease Models, Animal , Eye Proteins/genetics , Fatty Acids/pharmacology , Hippocampus/drug effects , Macular Degeneration/genetics , Macular Degeneration/metabolism , Membrane Proteins/genetics , Mice , Mice, Transgenic , Neurons/drug effects , Neurons/metabolism , Seizures/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...