Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Environ Toxicol Chem ; 42(7): 1472-1484, 2023 07.
Article in English | MEDLINE | ID: mdl-37042562

ABSTRACT

Surfactants are chemicals commonly used in a wide range of domestic and industrial products. In the present study, ultimate biodegradation of 18 surfactants representing different classes (including several polymeric alcohol ethoxylates [AEs]) was determined in seawater at 20 °C by a Closed Bottle test method. After 28 days of incubation, 12 surfactants reached 60% biodegradation and were considered to be readily biodegradable in seawater. The results for the six additional surfactants indicated that the 60% pass level may be reached by extended incubation time, or that reduced biodegradation could be associated with toxicity of the chemicals. All these six surfactants were biodegraded >20% after 28 days, indicative of primary biodegradation in seawater. Polymeric ethoxylates with high numbers of ethylene oxide (EO) groups (40-50 EO groups) were more slowly biodegraded than polyethoxylates with 4 to 23 EO groups. Biodegradation experiments of the AE C12 EO9 (3 to 18 EO groups) in a carousel system at 20 °C with natural seawater and a surfactant concentration of 500 µg/L showed rapid primary biodegradation by targeted analyses of the AE, with >99% primary biodegradation after 2 days of incubation. The surfactant depletion coincided with temporary formation of polyethylene glycols, suggesting that central fission is an important degradation step in seawater. A primary biodegradation experiment in the carousel system with C12 EO9 was conducted in the presence of suspended particulate materials (SPMs; marine phytoplankton and clay particles), showing that the presence of SPMs did not hamper the primary biodegradation of the surfactant. Separation of fractions in 20-µm steel filters indicated some particle association of the surfactant. Environ Toxicol Chem 2023;42:1472-1484. © 2023 SETAC.


Subject(s)
Seawater , Surface-Active Agents , Surface-Active Agents/analysis , Polyethylene Glycols , Alcohols , Biodegradation, Environmental
2.
Chemosphere ; 259: 127473, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32622247

ABSTRACT

Cationic polymers (CPs) are widely used chemicals for wastewater treatment applications and in various "down-the-drain" household products. The aquatic toxicity of CPs results from an electrostatic interaction with negatively charged cell surfaces. These effects are greatly mitigated by the binding affinity of CPs to total organic carbon (TOC) in surface water. Consequently, baseline aquatic toxicity tests of CPs using clean lab water (TOC < 2 mg/L) typically overestimate toxicity and risk which is greatly mitigated at higher environmentally relevant OC levels. However, the point at which mitigation begins is not well defined and low-level TOC in lab water may influence the baseline toxicity outcome. Similarly, divalent cations, quantified as water hardness, may modulate the electrostatic binding between OC and CP. Although standard guidelines define limits for lab water hardness and TOC, the consequences of variability within those limits on test outcome is unknown. We investigated the impact of part-per-billion (ppb) additions of TOC to lab water at different hardness levels on CP acute toxicity to Daphnia magna and Raphidocelis subcapitata. In both species, the acute toxicities of CPs with different molecular weight and charge density varied by > 10-fold in response to slight changes in TOC and water hardness, although parameters were maintained within guideline limits. When determining the baseline aquatic toxicity of CPs, the lab water should be standardized at the lowest biologically tolerable hardness and TOC at a reliably measurable level (>1 - < 2 mg/L) to reduce variability and increase the reliability of the toxicity estimate.


Subject(s)
Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Animals , Cations , Daphnia/drug effects , Environmental Monitoring/standards , Fresh Water/chemistry , Hardness , Polymers/toxicity , Reproducibility of Results , Toxicity Tests
3.
Environ Toxicol Chem ; 38(10): 2087-2100, 2019 10.
Article in English | MEDLINE | ID: mdl-31233238

ABSTRACT

Emissions of plastic waste to the environment and the subsequent degradation into microplastic particles that have the potential to interact with biological organisms represent a concern for global society. Current understanding of the potential impacts on aquatic and terrestrial population stability and ecosystem structure and function associated with emissions of microplastic particles is limited and insufficient to fully assess environmental risks. Multistakeholder discussions can provide an important element in helping to identify and prioritize key knowledge gaps in assessing potential risks. In the present review, we summarize multistakeholder discussions from a 1-d International Council of Chemical Associations-sponsored symposium, which involved 39 scientists from 8 countries with representatives from academia, industry, and government. Participants were asked to consider the following: discuss the scientific merits and limitations of applying a proposed conceptual environmental risk assessment (ERA) framework for microplastic particles and identify and prioritize major research needs in applying ERA tools for microplastic particles. Multistakeholder consensus was obtained with respect to the interpretation of the current state of the science related to effects and exposure to microplastic particles, which implies that it is unlikely that the presence of microplastic in the environment currently represents a risk. However, the quality and quantity of existing data require substantial improvement before conclusions regarding the potential risks and impacts of microplastic particles can be fully assessed. Research that directly addresses the development and application of methods that strengthen the quality of data should thus be given the highest priority. Activities aimed at supporting the development of and access to standardized reference material were identified as a key research need. Environ Toxicol Chem 2019;38:2087-2100. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Subject(s)
Microplastics/toxicity , Bioaccumulation , Environmental Monitoring , Environmental Restoration and Remediation , Microplastics/chemistry , Microplastics/metabolism , Particle Size , Risk Assessment
4.
Rev. bras. entomol ; 55(2): 253-266, June 2011. graf, mapas, tab
Article in English | LILACS | ID: lil-593253

ABSTRACT

Evaluating leaf litter beetle data sampled by Winkler extraction from Atlantic forest sites in southern Brazil. To evaluate the reliability of data obtained by Winkler extraction in Atlantic forest sites in southern Brazil, we studied litter beetle assemblages in secondary forests (5 to 55 years after abandonment) and old-growth forests at two seasonally different points in time. For all regeneration stages, species density and abundance were lower in April compared to August; but, assemblage composition of the corresponding forest stages was similar in both months. We suggest that sampling of small litter inhabiting beetles at different points in time using the Winkler technique reveals identical ecological patterns, which are more likely to be influenced by sample incompleteness than by differences in their assemblage composition. A strong relationship between litter quantity and beetle occurrences indicates the importance of this variable for the temporal species density pattern. Additionally, the sampled beetle material was compared with beetle data obtained with pitfall traps in one old-growth forest. Over 60 percent of the focal species captured with pitfall traps were also sampled by Winkler extraction in different forest stages. Few beetles with a body size too large to be sampled by Winkler extraction were only sampled with pitfall traps. This indicates that the local litter beetle fauna is dominated by small species. Hence, being aware of the exclusion of large beetles and beetle species occurring during the wet season, the Winkler method reveals a reliable picture of the local leaf litter beetle community.


Avaliação dos besouros da liteira amostrados por extração Winkler na Floresta Atlântica do Sul do Brasil. Para avaliar a confiabilidade dos dados obtidos pela extração Winkler em coletas na Floresta Atlântica do Sul do Brasil, nós estudamos as assembléias de besouros da liteira em florestas secundárias (5 a 55 anos após abandono) e no estágio avançado em dois pontos no tempo sazonalmente diferentes. Para todos os estágios de renegeração, a densidade e abundância das espécies foram menores em abril comparado a agosto; porém, a composição das assembléias dos estágios florestais correspondentes foi similar em ambos os meses. Nós sugerimos que amostragens de pequenos besouros habitantes de liteira em diferentes pontos no tempo usando o método Winkler revelam padrões ecológicos idênticos. Um forte relacionamento entre a quantidade da liteira e a ocorrência de besouros indica a importância dessa variável no padrão temporal de densidade das espécies. Adicionalmente, o material amostrado foi comparado com dados de besouros obtidos utilizando armadilhas do tipo pitfall em um estágio avançado de regeneração. Cerca de 60 por cento das espécies de interesse capturadas em pitfall foram também amostradas pela extração Winkler. Poucos besouros com tamanho corporal grande para ser amostrado pela extração Winkler foram capturados com a armadilha pitfall. Isso indica que a fauna local de besouros da liteira é dominada por espécies pequenas. Portanto, sabendo da exclusão das espécies grandes e das espécies que ocorrem durante a estação chuvosa, o método Winkler revela um cenário confiável da comunidade local de besouros da literia.

SELECTION OF CITATIONS
SEARCH DETAIL
...