Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 246
Filter
1.
Neuro Oncol ; 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39340366

ABSTRACT

BACKGROUND: Despite reassuring clinical and histological features, low grade meningiomas can recur after surgery. Targeted gene expression profiling improves risk stratification of meningiomas, but the utility of this approach for clinical low-risk meningiomas is incompletely understood. METHODS: This was a multicenter retrospective cohort study of meningiomas from patients who were treated at 4 institutions from 1992 to 2023. Adult patients with newly diagnosed or recurrent World Health Organization (WHO) grade 1 meningiomas that were treated with gross total resection (GTR) or subtotal resection (STR), or newly diagnosed WHO grade 2 meningiomas that were treated with GTR, were included. A 34-gene expression biomarker and gene expression risk score (continuous from 0 to 1) was evaluated in all samples. RESULTS: The study cohort was comprised of 723 patients, none of which were used for discovery or training of the gene expression biomarker and 265 of which were previously unreported. There were 626 WHO grade 1 meningiomas, 490 with GTR and 126 with STR, and 97 WHO grade 2 meningiomas with GTR. Targeted gene expression profiling classified 51.3% of clinical low-risk meningiomas as molecular intermediate-risk and 9.5% as molecular high-risk. Combining the gene expression biomarker with extent of resection revealed 19.8% of clinical low-risk meningiomas had unfavorable local freedom from recurrence (LFFR) and overall survival (OS), including 7.1% of newly diagnosed WHO grade 1 meningiomas with GTR. The risk score was prognostic for LFFR (HR per 0.1 increase in risk score 1.89, 95% CI 1.58-2.25) across all WHO grades, extents of resection, and newly diagnosed or recurrent presentations. CONCLUSIONS: Targeted gene expression profiling can identify clinical low-risk meningiomas that are likely to recur after surgery.

2.
J Neurooncol ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39254813

ABSTRACT

PURPOSE: The objective of our study was to analyze methylomic and clinical features of a cohort of spinal meningiomas (SMs) resected at our institution. METHODS: This is a retrospective study of patients undergoing SM resection at our institution between 2010 and 2023. Clinical and radiographic characteristics were reviewed and analyzed with standard statistical methods. A Partitioning Around Medoids approach was used to cluster SMs with methylation data in a combined cohort from our institution and a publicly available dataset by methylation profiles. Clinical variables and pathway analyses were compared for the resulting clusters. RESULTS: Sixty-five SMs were resected in 53 patients with median radiographic follow-up of 34 months. Forty-six (87%) patients were female. The median age at surgery was 65 years and median tumor diameter was 1.9 cm. The five-year progression-free survival rate was 90%, with subtotal resection being associated with recurrence or progression (p = .017). SMs clustered into hypermethylation, intermediate methylation, and hypomethylation subgroups. Tumors in the hypermethylated subgroup were associated with higher WHO grade (p = .046) and higher risk histological subtypes (p <.001), while tumors in the hypomethylated subgroup were least likely to present with copy-number loss in chromosome 22q (p <.0001). SMs classified as immune-enriched under a previously developed intracranial meningioma classifier did not have increased leukocyte fractions or hypomethylation of genes typically hypomethylated in immune-enriched tumors. CONCLUSION: SMs are more benign than their intracranial counterparts, and gross-total resection results in long term PFS. Methylation profiling identifies subgroups with differences in clinical variables.

3.
Nat Commun ; 15(1): 7383, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256378

ABSTRACT

Intravital 2P-microscopy enables the longitudinal study of brain tumor biology in superficial mouse cortex layers. Intravital microscopy of the white matter, an important route of glioblastoma invasion and recurrence, has not been feasible, due to low signal-to-noise ratios and insufficient spatiotemporal resolution. Here, we present an intravital microscopy and artificial intelligence-based analysis workflow (Deep3P) that enables longitudinal deep imaging of glioblastoma up to a depth of 1.2 mm. We find that perivascular invasion is the preferred invasion route into the corpus callosum and uncover two vascular mechanisms of glioblastoma migration in the white matter. Furthermore, we observe morphological changes after white matter infiltration, a potential basis of an imaging biomarker during early glioblastoma colonization. Taken together, Deep3P allows for a non-invasive intravital investigation of brain tumor biology and its tumor microenvironment at subcortical depths explored, opening up opportunities for studying the neuroscience of brain tumors and other model systems.


Subject(s)
Brain Neoplasms , Glioblastoma , Intravital Microscopy , Tumor Microenvironment , Animals , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Intravital Microscopy/methods , Mice , Humans , White Matter/diagnostic imaging , White Matter/pathology , Corpus Callosum/diagnostic imaging , Corpus Callosum/pathology , Cell Line, Tumor , Microscopy, Fluorescence, Multiphoton/methods , Neoplasm Invasiveness
4.
Neuro Oncol ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093629

ABSTRACT

BACKGROUND: Advances in our understanding of the molecular biology of meningiomas have led to significant gains in the ability to predict patient prognosis and tumor recurrence and to identify novel targets for therapeutic design. Specifically, classification of meningiomas based on DNA methylation has greatly improved our ability to risk stratify patients, however new questions have arisen in terms of the underlying impact these DNA methylation signatures have on meningioma biology. METHODS: This study utilizes RNA-seq data from 486 meningioma samples corresponding to three meningioma DNA methylation groups (Merlin-intact, Immune-enriched, and Hypermitotic), followed by in vitro experiments utilizing human meningioma cell lines. RESULTS: We identify alterations in RNA splicing between meningioma DNA methylation groups including individual splicing events that correlate with Hypermitotic meningiomas and predict tumor recurrence and overall patient prognosis and compile a set of splicing events that can accurately predict DNA methylation classification based on RNA-seq data. Furthermore, we validate these events using RT-PCR in patient samples and meningioma cell lines. Additionally, we identify alterations in RNA binding proteins and splicing factors that lie upstream of RNA splicing events, including upregulation of SRSF1 in Hypermitotic meningiomas which we show drives alternative RNA splicing changes. Finally, we design splice switching antisense oligonucleotides to target RNA splicing changes in NASP and MFF observed in Hypermitotic meningiomas, providing a rationale for RNA-based therapeutic design. CONCLUSIONS: RNA splicing is an important driver of meningioma phenotypes that can be useful in prognosticating patients and as a potential exploit for therapeutic vulnerabilities.

5.
J Clin Invest ; 134(19)2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39137048

ABSTRACT

Despite being the leading cause of cancer-related childhood mortality, pediatric gliomas have been relatively understudied, and the repurposing of immunotherapies has not been successful. Whole-transcriptome sequencing, single-cell sequencing, and sequential multiplex immunofluorescence were used to identify an immunotherapeutic strategy that could be applied to multiple preclinical glioma models. MAPK-driven pediatric gliomas have a higher IFN signature relative to other molecular subgroups. Single-cell sequencing identified an activated and cytotoxic microglia (MG) population designated MG-Act in BRAF-fused, MAPK-activated pilocytic astrocytoma (PA), but not in high-grade gliomas or normal brain. T cell immunoglobulin and mucin domain 3 (TIM3) was expressed on MG-Act and on the myeloid cells lining the tumor vasculature but not normal brain vasculature. TIM3 expression became upregulated on immune cells in the PA microenvironment, and anti-TIM3 reprogrammed ex vivo immune cells from human PAs to a proinflammatory cytotoxic phenotype. In a genetically engineered murine model of MAPK-driven, low-grade gliomas, anti-TIM3 treatment increased median survival over IgG- and anti-PD-1-treated mice. Single-cell RNA-Seq data during the therapeutic window of anti-TIM3 revealed enrichment of the MG-Act population. The therapeutic activity of anti-TIM3 was abrogated in mice on the CX3CR1 MG-KO background. These data support the use of anti-TIM3 in clinical trials of pediatric low-grade, MAPK-driven gliomas.


Subject(s)
Astrocytoma , Brain Neoplasms , Hepatitis A Virus Cellular Receptor 2 , Proto-Oncogene Proteins B-raf , Hepatitis A Virus Cellular Receptor 2/genetics , Hepatitis A Virus Cellular Receptor 2/immunology , Hepatitis A Virus Cellular Receptor 2/metabolism , Humans , Animals , Mice , Proto-Oncogene Proteins B-raf/genetics , Astrocytoma/genetics , Astrocytoma/immunology , Astrocytoma/pathology , Astrocytoma/therapy , Astrocytoma/metabolism , Child , Brain Neoplasms/immunology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Female , Tumor Microenvironment/immunology , Male , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology , Neoplasm Proteins/metabolism , Glioma/immunology , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Glioma/therapy
7.
Nat Med ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169220

ABSTRACT

Treatment of the tumor and dural margin with surgery and sometimes radiation are cornerstones of therapy for meningioma. Molecular classifications have provided insights into the biology of disease; however, response to treatment remains heterogeneous. In this study, we used retrospective data on 2,824 meningiomas, including molecular data on 1,686 tumors and 100 prospective meningiomas, from the RTOG-0539 phase 2 trial to define molecular biomarkers of treatment response. Using propensity score matching, we found that gross tumor resection was associated with longer progression-free survival (PFS) across all molecular groups and longer overall survival in proliferative meningiomas. Dural margin treatment (Simpson grade 1/2) prolonged PFS compared to no treatment (Simpson grade 3). Molecular group classification predicted response to radiotherapy, including in the RTOG-0539 cohort. We subsequently developed a molecular model to predict response to radiotherapy that discriminates outcome better than standard-of-care classification. This study highlights the potential for molecular profiling to refine surgical and radiotherapy decision-making.

8.
J Clin Invest ; 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39207859

ABSTRACT

Glioblastoma (GBM) is a highly aggressive and malignant brain tumor with limited therapeutic options and a poor prognosis. Despite current treatments, the invasive nature of GBM often leads to recurrence. A promising alternative strategy is to harness the potential of the immune system against tumor cells. Our previous data showed that the Bvax (B-cell-based vaccine) can induce therapeutic responses in preclinical models of GBM. In this study, we aim to characterize the antigenic reactivity of BVax-derived antibodies and evaluate their therapeutic potential. We performed immunoproteomics and functional assays in murine models and human GBM patient samples. Our investigations revealed that BVax distributes throughout the GBM tumor microenvironment (TME) and then differentiates into antibody-producing plasmablasts. Proteomic analyses indicate that the antibodies produced by BVax display unique reactivity, predominantly targeting factors associated with cell motility and the extracellular matrix. Crucially, these antibodies inhibit critical processes such as GBM cell migration and invasion. These findings provide valuable insights into the therapeutic potential of BVax-derived antibodies for GBM patients, pointing towards a novel direction in GBM immunotherapy.

11.
J Neurosurg ; : 1-11, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968615

ABSTRACT

OBJECTIVE: Ki-67 immunohistochemistry is widely used as a prognostic marker in meningiomas, but visual estimations tend to be imprecise. Whether the average Ki-67 over an entire slide, a particular block, or areas of high staining (hotspots) is prognostic for recurrence-free survival (RFS) and overall survival (OS) is unknown. This study aimed to generate evidence-based recommendations for the optimal use of Ki-67 immunohistochemistry in the workup of meningiomas. METHODS: All tissue blocks from a retrospective cohort of 221 patients with primary meningioma (141 WHO grade 1, 64 WHO grade 2, 16 WHO grade 3) were immunostained for Ki-67 and scanned using automated digital analysis software. QuPath was used to quantify the average Ki-67 proliferation index per slide as well as the Ki-67 hotspot in a 2.2-mm2 area within each slide. The best block was defined subjectively by a neuropathologist as the most representative tissue block from each case. The pathology report Ki-67 was determined by visual estimation. Age, sex, WHO grade, extent of resection, tumor location, and quantitative Ki-67 labeling were tested to determine risk factors for RFS and OS. RESULTS: Multivariable analyses demonstrated that WHO grade 2 (HR 2.42, p = 0.018), subtotal resection (HR 8.16, p < 0.0001), near-total resection (HR 2.24, p = 0.041), QuPath Ki-67 averaged across all blocks (HR per % increase = 1.72, p = 0.030), and pathology report Ki-67 (HR per % increase = 1.05, p = 0.0026) were associated with shorter RFS. The average Ki-67 in the best block, maximum across all slides, and maximum hotspot in the best block were not associated with RFS. Only male sex was independently associated with shorter OS (HR 8.52, p = 0.0003). The pathology report Ki-67 was, on average, 6.5 times higher than the QuPath average. CONCLUSIONS: These data on Ki-67 in meningiomas indicate the following: 1) visual estimation substantially overestimates Ki-67, 2) digital quantification of average Ki-67 across all tissue blocks provides more prognostic information than small hotspot regions or an entire single block, and 3) Ki-67 is not informative for OS. The results suggest that best practices for incorporating Ki-67 into meningioma prognostication include digital quantification of average Ki-67 over multiple blocks.

12.
Neuro Oncol ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028616

ABSTRACT

BACKGROUND: Glioblastoma is a highly aggressive brain cancer that is resistant to conventional immunotherapy strategies. Botensilimab, an Fc-enhanced anti-CTLA-4 antibody (FcE-aCTLA-4), has shown durable activity in "cold" and immunotherapy-refractory cancers. METHOD: We evaluated the efficacy and immune microenvironment phenotype of a mouse analogue of FcE-aCTLA-4 in treatment-refractory preclinical models of glioblastoma, both as a monotherapy and in combination with doxorubicin delivered via low-intensity pulsed ultrasound and microbubbles (LIPU/MB). Additionally, we studied 4 glioblastoma patients treated with doxorubicin, anti-PD-1 with concomitant LIPU/MB to investigate the novel effect of doxorubicin modulating FcγR expressions in tumor associated macrophages/microglia (TAMs). RESULTS: FcE-aCTLA-4 demonstrated high-affinity binding to FcγRIV, the mouse ortholog of human FcγRIIIA, which was highly expressed in TAMs in human glioblastoma, most robustly at diagnosis. Notably, FcE-aCTLA-4 mediated selective depletion of intra-tumoral regulatory T cells (Tregs) via TAM-mediated phagocytosis, while sparing peripheral Tregs. Doxorubicin, a chemotherapeutic drug with immunomodulatory functions, was found to upregulate FcγRIIIA on TAMs in glioblastoma patients who received doxorubicin and anti-PD-1 with concomitant LIPU/MB. In murine models of immunotherapy-resistant gliomas, a combinatorial regimen of FcE-aCTLA-4, anti-PD-1, and doxorubicin with LIPU/MB, achieved a 90% cure rate, that was associated robust infiltration of activated CD8+ T cells and establishment of immunological memory as evidenced by rejection upon tumor rechallenge. CONCLUSION: Our findings demonstrate that FcE-aCTLA-4 promotes robust immunomodulatory and anti-tumor effects in murine gliomas and is significantly enhanced when combined with anti-PD-1, doxorubicin, and LIPU/MB. We are currently investigating this combinatory strategy in a clinical trial (clinicaltrials.gov NCT05864534).

14.
Clin Proteomics ; 21(1): 41, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879494

ABSTRACT

BACKGROUND: Gliomas are aggressive malignant tumors, with poor prognosis. There is an unmet need for the discovery of new, non-invasive biomarkers for differential diagnosis, prognosis, and management of brain tumors. Our objective is to validate four plasma biomarkers - glial fibrillary acidic protein (GFAP), neurofilament light (NEFL), matrix metalloprotease 3 (MMP3) and fatty acid binding protein 4 (FABP4) - and compare them with established brain tumor molecular markers and survival. METHODS: Our cohort consisted of patients with benign and malignant brain tumors (GBM = 77, Astrocytomas = 26, Oligodendrogliomas = 23, Secondary tumors = 35, Meningiomas = 70, Schwannomas = 15, Pituitary adenomas = 15, Normal individuals = 30). For measurements, we used ultrasensitive electrochemiluminescence multiplexed immunoassays. RESULTS: High plasma GFAP concentration was associated with GBM, low GFAP and high FABP4 were associated with meningiomas, and low GFAP and low FABP4 were associated with astrocytomas and oligodendrogliomas. NEFL was associated with progression of disease. Several prognostic genetic alterations were significantly associated with all plasma biomarker levels. We found no independent associations between plasma GFAP, NEFL, FABP4 and MMP3, and overall survival. The candidate biomarkers could not reliably discriminate GBM from primary or secondary CNS lymphomas. CONCLUSIONS: GFAP, NEFL, FABP4 and MMP3 are useful for differential diagnosis and prognosis, and are associated with molecular changes in gliomas.

15.
J Neurooncol ; 169(1): 195-201, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38865011

ABSTRACT

INTRODUCTION: Central Neurocytoma (CN) is a rare, WHO grade 2 brain tumor that predominantly affects young adults. Gross total resection (GTR) is often curative for CNs, but the optimal treatment paradigm including incorporation of RT, following subtotal resection (STR) and for scarcer pediatric cases has yet to be established. METHODS: Patients between 2001 and 2021 with a pathologic diagnosis of CN were reviewed. Demographic, treatment, and tumor characteristics were recorded. Recurrence free survival (RFS) and overall survival (OS) were calculated according to the Kaplan Meier-method. Post-RT tumor volumetric regression analysis was performed. RESULTS: Seventeen adults (≥ 18 years old) and 5 children (< 18 years old) met the criteria for data analysis (n = 22). With a median follow-up of 6.9 years, there was no tumor-related mortality. Patients who received STR and/or had atypical tumors (using a cut-off of Ki-67 > 4%) experienced decreased RFS compared to those who received GTR and/or were without atypical tumors. RFS at 5 years for typical CNs was 67% compared to 22% for atypical CNs. Every pediatric tumor was atypical and 3/5 recurred within 5 years. Salvage RT following tumor recurrence led to no further recurrences within the timeframe of continued follow-up; volumetric analysis for 3 recurrent tumors revealed an approximately 80% reduction in tumor size. CONCLUSION: We provide encouraging evidence that CNs treated with GTR or with RT after tumor recurrence demonstrate good long-term tumor control.


Subject(s)
Brain Neoplasms , Neurocytoma , Humans , Neurocytoma/pathology , Neurocytoma/therapy , Neurocytoma/mortality , Male , Female , Adolescent , Adult , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Brain Neoplasms/mortality , Child , Young Adult , Follow-Up Studies , Middle Aged , Child, Preschool , Neoplasm Recurrence, Local/pathology , Retrospective Studies , Treatment Outcome , Survival Rate
16.
J Clin Invest ; 134(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38941297

ABSTRACT

STING agonists can reprogram the tumor microenvironment to induce immunological clearance within the central nervous system. Using multiplexed sequential immunofluorescence (SeqIF) and the Ivy Glioblastoma Atlas, STING expression was found in myeloid populations and in the perivascular space. The STING agonist 8803 increased median survival in multiple preclinical models of glioblastoma, including QPP8, an immune checkpoint blockade-resistant model, where 100% of mice were cured. Ex vivo flow cytometry profiling during the therapeutic window demonstrated increases in myeloid tumor trafficking and activation, alongside enhancement of CD8+ T cell and NK effector responses. Treatment with 8803 reprogrammed microglia to express costimulatory CD80/CD86 and iNOS, while decreasing immunosuppressive CD206 and arginase. In humanized mice, where tumor cell STING is epigenetically silenced, 8803 therapeutic activity was maintained, further attesting to myeloid dependency and reprogramming. Although the combination with a STAT3 inhibitor did not further enhance STING agonist activity, the addition of anti-PD-1 antibodies to 8803 treatment enhanced survival in an immune checkpoint blockade-responsive glioma model. In summary, 8803 as a monotherapy demonstrates marked in vivo therapeutic activity, meriting consideration for clinical translation.


Subject(s)
Glioblastoma , Membrane Proteins , Tumor Microenvironment , Animals , Glioblastoma/immunology , Glioblastoma/pathology , Glioblastoma/drug therapy , Glioblastoma/genetics , Tumor Microenvironment/immunology , Mice , Membrane Proteins/immunology , Membrane Proteins/genetics , Membrane Proteins/agonists , Humans , Cell Line, Tumor , Brain Neoplasms/immunology , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/genetics
18.
Nat Commun ; 15(1): 4698, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844770

ABSTRACT

Given the marginal penetration of most drugs across the blood-brain barrier, the efficacy of various agents remains limited for glioblastoma (GBM). Here we employ low-intensity pulsed ultrasound (LIPU) and intravenously administered microbubbles (MB) to open the blood-brain barrier and increase the concentration of liposomal doxorubicin and PD-1 blocking antibodies (aPD-1). We report results on a cohort of 4 GBM patients and preclinical models treated with this approach. LIPU/MB increases the concentration of doxorubicin by 2-fold and 3.9-fold in the human and murine brains two days after sonication, respectively. Similarly, LIPU/MB-mediated blood-brain barrier disruption leads to a 6-fold and a 2-fold increase in aPD-1 concentrations in murine brains and peritumoral brain regions from GBM patients treated with pembrolizumab, respectively. Doxorubicin and aPD-1 delivered with LIPU/MB upregulate major histocompatibility complex (MHC) class I and II in tumor cells. Increased brain concentrations of doxorubicin achieved by LIPU/MB elicit IFN-γ and MHC class I expression in microglia and macrophages. Doxorubicin and aPD-1 delivered with LIPU/MB results in the long-term survival of most glioma-bearing mice, which rely on myeloid cells and lymphocytes for their efficacy. Overall, this translational study supports the utility of LIPU/MB to potentiate the antitumoral activities of doxorubicin and aPD-1 for GBM.


Subject(s)
Blood-Brain Barrier , Brain Neoplasms , Doxorubicin , Microbubbles , Programmed Cell Death 1 Receptor , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Doxorubicin/therapeutic use , Doxorubicin/analogs & derivatives , Animals , Humans , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Mice , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Cell Line, Tumor , Glioma/drug therapy , Glioma/immunology , Glioma/pathology , Brain/metabolism , Brain/drug effects , Female , Drug Delivery Systems , Ultrasonic Waves , Glioblastoma/drug therapy , Glioblastoma/immunology , Glioblastoma/pathology , Male , Microglia/drug effects , Microglia/metabolism , Mice, Inbred C57BL , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/pharmacology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/administration & dosage , Polyethylene Glycols
19.
Cancers (Basel) ; 16(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38730704

ABSTRACT

Meningioma classification and treatment have evolved over the past eight decades. Since Bailey, Cushing, and Eisenhart's description of meningiomas in the 1920s and 1930s, there have been continual advances in clinical stratification by histopathology, radiography and, most recently, molecular profiling, to improve prognostication and predict response to therapy. Precise and accurate classification is essential to optimizing management for patients with meningioma, which involves surveillance imaging, surgery, primary or adjuvant radiotherapy, and consideration for clinical trials. Currently, the World Health Organization (WHO) grade, extent of resection (EOR), and patient characteristics are used to guide management. While these have demonstrated reliability, a substantial number of seemingly benign lesions recur, suggesting opportunities for improvement of risk stratification. Furthermore, the role of adjuvant radiotherapy for grade 1 and 2 meningioma remains controversial. Over the last decade, numerous studies investigating the molecular drivers of clinical aggressiveness have been reported, with the identification of molecular markers that carry clinical implications as well as biomarkers of radiotherapy response. Here, we review the historical context of current practices, highlight recent molecular discoveries, and discuss the challenges of translating these findings into clinical practice.

20.
Nat Genet ; 56(6): 1121-1133, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38760638

ABSTRACT

Intratumor heterogeneity underlies cancer evolution and treatment resistance, but targetable mechanisms driving intratumor heterogeneity are poorly understood. Meningiomas are the most common primary intracranial tumors and are resistant to all medical therapies, and high-grade meningiomas have significant intratumor heterogeneity. Here we use spatial approaches to identify genomic, biochemical and cellular mechanisms linking intratumor heterogeneity to the molecular, temporal and spatial evolution of high-grade meningiomas. We show that divergent intratumor gene and protein expression programs distinguish high-grade meningiomas that are otherwise grouped together by current classification systems. Analyses of matched pairs of primary and recurrent meningiomas reveal spatial expansion of subclonal copy number variants associated with treatment resistance. Multiplexed sequential immunofluorescence and deconvolution of meningioma spatial transcriptomes using cell types from single-cell RNA sequencing show decreased immune infiltration, decreased MAPK signaling, increased PI3K-AKT signaling and increased cell proliferation, which are associated with meningioma recurrence. To translate these findings to preclinical models, we use CRISPR interference and lineage tracing approaches to identify combination therapies that target intratumor heterogeneity in meningioma cell co-cultures.


Subject(s)
Genetic Heterogeneity , Meningeal Neoplasms , Meningioma , Meningioma/genetics , Meningioma/pathology , Humans , Meningeal Neoplasms/genetics , Meningeal Neoplasms/pathology , DNA Copy Number Variations , Gene Expression Regulation, Neoplastic , Genomics/methods , Single-Cell Analysis , Cell Proliferation/genetics , Neoplasm Recurrence, Local/genetics , Signal Transduction/genetics , Cell Line, Tumor , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL