Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Thromb Haemost ; 22(5): 1290-1303, 2024 May.
Article in English | MEDLINE | ID: mdl-38307391

ABSTRACT

Endothelial cells, forming a monolayer along blood vessels, intricately regulate vascular hemostasis, inflammatory responses, and angiogenesis. A key determinant of these functions is the controlled secretion of Weibel-Palade bodies (WPBs), which are specialized endothelial storage organelles housing a presynthesized pool of the hemostatic protein von Willebrand factor and various other hemostatic, inflammatory, angiogenic, and vasoactive mediators. This review delves into recent mechanistic insights into WPB biology, including the biogenesis that results in their unique morphology, the acquisition of intraluminal vesicles and other cargo, and the contribution of proton pumps to organelle acidification. Additionally, in light of a number of proteomic approaches to unravel the regulatory networks that control WPB formation and secretion, we provide a comprehensive overview of the WPB exocytotic machinery, including their molecular and cellular mechanisms.


Subject(s)
Endothelial Cells , Exocytosis , Weibel-Palade Bodies , von Willebrand Factor , Weibel-Palade Bodies/metabolism , Humans , von Willebrand Factor/metabolism , Animals , Endothelial Cells/metabolism , Proteomics/methods , Hemostasis
2.
J Thromb Haemost ; 21(7): 1967-1980, 2023 07.
Article in English | MEDLINE | ID: mdl-37061132

ABSTRACT

BACKGROUND: Von Willebrand factor (VWF) and VWF propeptide (VWFpp) are stored in eccentric nanodomains within platelet alpha-granules. VWF and VWFpp can undergo differential secretion following Weibel-Palade body exocytosis in endothelial cells; however, it is unclear if the same process occurs during platelet alpha-granule exocytosis. Using a high-throughput 3-dimensional super-resolution imaging workflow for quantification of individual platelet alpha-granule cargo, we studied alpha-granule cargo release in response to different physiological stimuli. OBJECTIVES: To investigate how VWF and VWFpp are released from alpha-granules in response to physiological stimuli. METHODS: Platelets were activated with protease-activated receptor 1 (PAR-1) activating peptide (PAR-1 ap) or collagen-related peptide (CRP-XL). Alpha-tubulin, VWF, VWFpp, secreted protein acidic and cysteine rich (SPARC), and fibrinogen were imaged using 3-dimensional structured illumination microscopy, followed by semiautomated analysis in FIJI. Uptake of anti-VWF nanobody during degranulation was used to identify alpha-granules that partially released content. RESULTS: VWFpp overlapped with VWF in eccentric alpha-granule subdomains in resting platelets and showed a higher degree of overlap with VWF than SPARC or fibrinogen. Activation of PAR-1 (0.6-20 µM PAR-1 ap) or glycoprotein VI (GPVI) (0.25-1 µg/mL CRP-XL) signaling pathways caused a dose-dependent increase in alpha-granule exocytosis. More than 80% of alpha-granules remained positive for VWF, even at the highest agonist concentrations. In contrast, the residual fraction of alpha-granules containing VWFpp decreased in a dose-dependent manner to 23%, whereas SPARC and fibrinogen were detected in 60% to 70% of alpha-granules when stimulated with 20 µM PAR-1 ap. Similar results were obtained using CRP-XL. Using an extracellular anti-VWF nanobody, we identified VWF in postexocytotic alpha-granules. CONCLUSION: We provide evidence for differential secretion of VWF and VWFpp from individual alpha-granules.


Subject(s)
Endothelial Cells , von Willebrand Factor , Humans , von Willebrand Factor/metabolism , Endothelial Cells/metabolism , Weibel-Palade Bodies/metabolism , Blood Platelets/metabolism , Fibrinogen/metabolism , Exocytosis
SELECTION OF CITATIONS
SEARCH DETAIL
...