Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 9(1): 11831, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31413355

ABSTRACT

Physical exercise has well-established anti-inflammatory effects, with neuro-immunological crosstalk being proposed as a mechanism underlying the beneficial effects of exercise on brain health. Here, we used physical exercise, a strong positive modulator of adult hippocampal neurogenesis, as a model to identify immune molecules that are secreted into the blood stream, which could potentially mediate this process. Proteomic profiling of mouse plasma showed that levels of the chemokine lymphotactin (XCL1) were elevated after four days of running. We found that XCL1 treatment of primary cells isolated from both the dentate gyrus and the subventricular zone of the adult mice led to an increase in the number of neurospheres and neuronal differentiation in neurospheres derived from the dentate gyrus. In contrast, primary dentate gyrus cells isolated from XCL1 knockout mice formed fewer neurospheres and exhibited a reduced neuronal differentiation potential. XCL1 supplementation in a dentate gyrus-derived neural precursor cell line promoted neuronal differentiation and resulted in lower cell motility and a reduced number of cells in the S phase of the cell cycle. This work suggests an additional function of the chemokine XCL1 in the brain and underpins the complexity of neuro-immune interactions that contribute to the regulation of adult hippocampal neurogenesis.


Subject(s)
Cell Differentiation , Cell Proliferation , Chemokines, C/metabolism , Hippocampus/metabolism , Neurons/cytology , Physical Conditioning, Animal , Animals , Hippocampus/cytology , In Vitro Techniques , Mice , Mice, Knockout
2.
Nat Commun ; 9(1): 3297, 2018 08 17.
Article in English | MEDLINE | ID: mdl-30120238

ABSTRACT

The conditional and reversible depletion of proteins by auxin-mediated degradation is a powerful tool to investigate protein functions in cells and whole organisms. However, its wider applications require fusing the auxin-inducible degron (AID) to individual target proteins. Thus, establishing the auxin system for multiple proteins can be challenging. Another approach for directed protein degradation are anti-GFP nanobodies, which can be applied to GFP stock collections that are readily available in different experimental models. Here, we combine the advantages of auxin and nanobody-based degradation technologies creating an AID-nanobody to degrade GFP-tagged proteins at different cellular structures in a conditional and reversible manner in human cells. We demonstrate efficient and reversible inactivation of the anaphase promoting complex/cyclosome (APC/C) and thus provide new means to study the functions of this essential ubiquitin E3 ligase. Further, we establish auxin degradation in a vertebrate model organism by employing AID-nanobodies in zebrafish.


Subject(s)
Green Fluorescent Proteins/metabolism , Indoleacetic Acids/metabolism , Proteolysis , Single-Domain Antibodies/metabolism , Anaphase-Promoting Complex-Cyclosome/metabolism , Animals , Cell Compartmentation , HeLa Cells , Humans , Kinetics , Lysine/metabolism , Recombinant Fusion Proteins/metabolism , Zebrafish/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL