Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Biomed Eng ; 48(12): 2846-2858, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32542588

ABSTRACT

We provide an innovative, bioengineering, mechanobiology-based approach to rapidly (2-h) establish the in vivo metastatic likelihood of patient tumor-samples, where results are in direct agreement with clinical histopathology and patient outcomes. Cancer-related mortality is mostly due to local recurrence or to metastatic disease, thus early prediction of tumor-cell-fate may critically affect treatment protocols and survival rates. Metastasis and recurrence risks are currently predicted by lymph-node status, tumor size, histopathology and genetic testing, however, these are not infallible and results may require days/weeks. We have previously observed that subpopulations of invasive cancer-cells will rapidly (1-2 h) push into the surface of physiological-stiffness, synthetic polyacrylamide gels, reaching to cell-scale depths, while normal or noninvasive cells do not considerably indent gels. Here, we evaluate the mechanical invasiveness of established breast and pancreatic cell lines and of tumor-cells from fresh, suspected pancreatic cancer tumors. The mechanical invasiveness matches the in vitro metastatic potential in cell lines as determined with Boyden chamber assays. Moreover, the mechanical invasiveness directly agrees with the clinical histopathology in primary-site, pancreatic-tumors. Thus, the rapid, patient-specific, early prediction of metastatic likelihood, on the time-scale of initial resection/biopsy, can directly affect disease management and treatment protocols.


Subject(s)
Breast Neoplasms , Early Detection of Cancer/methods , Neoplasm Invasiveness , Pancreatic Neoplasms , Acrylic Resins , Breast Neoplasms/diagnosis , Breast Neoplasms/pathology , Cell Movement , Cell Survival , Gels , Humans , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/pathology , Prognosis , Tumor Cells, Cultured
2.
Eur J Neurol ; 18(3): 410-24, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20695885

ABSTRACT

BACKGROUND: Alzheimer's disease and Schizophrenia are two common diseases of the brain with significant differences in neuropathology, etiology and symptoms. This dissimilarity in the two diseases makes a comparison of the two ideal for detecting molecular substrates that are common to brain disorders in general. METHODS: In this study, we compared gene expression profiles across multiple brain areas, taken postmortem from patients with well-characterized Alzheimer's disease and Schizophrenia, and from cognitively normal control group with no neuro- or psychopathology. RESULTS: Although the totality of gene expression changes in the two diseases is dissimilar, a subset of genes appears to play a role in both diseases in specific brain regions. We find at Brodmann area 22, the superior temporal gyrus, a statistically significant number of genes with apparently disregulated expression in both diseases. Furthermore, we found genes that differentiate the two diseases from the control across multiple brain regions, and note that these genes were usually down-regulated. Brodmann area 8, part of the superior frontal cortex, is relatively abundant with them. CONCLUSION: We show overwhelming statistical evidence for Alzheimer's and Schizophrenia sharing a specific molecular background at the superior temporal gyrus. We suggest that impairment of the regulation of autophagy pathway is shared, in BA 22, by the two diseases.


Subject(s)
Alzheimer Disease/genetics , Gene Expression Profiling , Schizophrenia/genetics , Temporal Lobe , Aged , Aged, 80 and over , Female , Humans , Male , Oligonucleotide Array Sequence Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...