Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Sci Total Environ ; 838(Pt 2): 155956, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35580679

ABSTRACT

We investigated the spatial distribution, mass profiles, and benthic risk assessment of a wide range of methylsiloxanes (MSs), including 7 cyclic MSs (CMSs; D3-D9; the number refers to the number of SiO bonds), 13 linear MSs (LMSs; L3-L15), and 15 modified and other MSs (MMSs) in sediments from the Tokyo Bay catchment basin, Japan. We observed widespread distribution of MSs (ΣCMS, ΣLMS, and ΣMMS) in the sediment samples, with concentrations of 1.0-6180 ng/g dry weight (dw), 1.8-10,100 ng/g dw, and < 0.31-210 ng/g dw, respectively. Our study is the first to measure various MMSs modified with hydrogen, vinyl, or phenyl groups; however, only methyltris(trimethylsiloxy)silane and phenyltris(trimethylsiloxy)silane were detected with high occurrence frequency. Notably, no elevated concentrations of MSs were observed downstream of silicone manufacturers, whereas the sediment was characterized by a specific D4/D5 ratio. With the Si-based mass profiles in extractable organosilicon (EOSi), the measured CMSs, LMSs, and MMSs accounted for 5.4%, 7.8%, and 0.2%, respectively. Unidentified EOSi (unknown fraction) constituted a major proportion of the EOSi in the sediment, with a mean of 87%, suggesting that the organosilicon environmental emissions were more than the measured MSs. In risk assessment of the adverse effects of D4, D5, and D6 in sediment on benthic organisms, the respective distributions indicated no overlap between the 95th percentile field sediment concentration and the 5th percentile chronic sediment no-effect concentration in organic carbon-normalized concentration. Although the hazard quotient compared with the predicted no-effect concentration for D5 and D6 exceeded the threshold level (hazard quotient ≥1), the results of probabilistic risk assessment for the three CMSs were not high enough to indicate a threat to benthic organisms in the study area.


Subject(s)
Bays , Water Pollutants, Chemical , Environmental Monitoring , Geologic Sediments/chemistry , Japan , Risk Assessment , Silanes , Tokyo , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 806(Pt 4): 150821, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34627924

ABSTRACT

We investigated mass loading and the spatial distribution of volatile methylsiloxanes (VMSs) including four cyclic VMSs (D3-D6; cVMSs, the number refers to the number of SiO bonds) and three linear VMSs (L3-L5; lVMSs) in Tokyo Bay, Japan, which is one of the most industrialized, urbanized, and populated areas in the world. Based on the VMS concentrations determined in eight main inflow rivers to the bay, the mass loading of VMSs via inflow rivers and sewage treatment plants located in Tokyo Bay was estimated at 2500 kg/y for total VMSs. Elevated mass loadings of VMSs were found in three of the rivers, inflowing to the inner west of Tokyo Bay. The distribution and deposition characteristics of VMSs were observed depending on the estuarine condition. Estuarine sediments were found to be efficient and effective traps for VMSs and the salting-out effect is one possible mechanism to explain this phenomenon. The overall profiles of D4, D5, and D6 in surface water and sediment were observed across Tokyo Bay; elevated concentrations were identified in the inner west bay with dispersed low concentrations in the outer bay, except for one hotspot of D4 in the sediment, indicating a major emission route of VMSs via inflow rivers. Additionally, the historical pollution profiles of VMSs in Tokyo Bay were reconstructed based on the VMS concentrations determined in a dated sediment core. VMSs were identified throughout the upper 40 cm of the sediment core (representing the mid 1980s); the profiles correspond with the historical use of VMSs in wash-off personal care-products. The noted decreasing trend of D4 might be a reflection of the early 2000s replacement of D4 with D5 in such products. The elevated VMS concentrations in the estuarine sediment raise concerns about the impact on the aquatic environment.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Bays , Japan , Siloxanes/analysis , Tokyo , Water Pollutants, Chemical/analysis
3.
Sci Total Environ ; 754: 142399, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33254939

ABSTRACT

The large production volume of methylsiloxanes (MSs), combined with their high mobility/volatility and persistence, is a matter of concern from the atmospheric pollution perspective. Therefore, we evaluated of the concentrations and emission sources of MSs, including 7 cyclic methylsiloxanes (D3-D9; CMSs, the number refers to the number of Si-O bonds) and 13 linear methylsiloxanes (L3-L15; LMSs) in ambient air collected from Saitama, Japan. This is a first study regarding the evaluation of 20 methylsiloxanes in the Japanese atmosphere. We improved the air sampling methodology by determination the stability of D5 during a 7-d air sampling and arbitrary sample storage period using polystyrene-divinyl benzene copolymer sorbent (Sep-Pak plus PS-2). We analyzed air samples for MSs seasonally collected from nine locations in Saitama, including urban, suburban, rural, and mountainous areas. The mean CMS and LMS concentrations were 358 ng m-3 and 13.4 ng m-3, respectively. The D5 concentrations were distributed widely, with high concentrations in urban/suburban populous areas and dispersed at low concentrations in surrounding areas (north and mountainous areas). We analyzed 7-d air samples collected every week over a year and found apparent seasonal and periodic trends in the CMS concentrations. In the diurnal sampling campaign, we observed periodic fluctuations in ambient CMSs, with an inverse relationship with the atmospheric boundary layer development during the day. Backward trajectories and the prevailing wind direction during the sampling period indicated that the specific profiles of D4 observed in fall/winter weeks and north of Saitama could be ascribed to northwestward air-mass advection. We employed a novel approach in estimating CMSs emission sources and source apportionment by using non-negative matrix factorization (NMF). The concentration matrix was divided successfully into two factors (emission sources) namely, personal care and household products and industrial activities.

4.
Chemosphere ; 233: 677-686, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31195272

ABSTRACT

Wastewater, aeration gas, dewatered sludge, and incineration ash and flue gas (from dewatered sludge) were collected from 9 sewage treatment plants (STPs) located in Saitama Prefecture, Japan, and analyzed for seven cyclic and linear volatile methylsiloxanes (VMSs) namely, D3, D4, D5, D6, L3, L4, and L5. The mass loadings and distribution of VMSs in STPs were estimated based on measured concentrations in liquid, solid, and gaseous samples, including incinerated dewatered sludge. Mass loading of ΣVMS varied widely from 21 kg y-1 to 3740 kg y-1, depending on the volume of wastewater treated in each STP. Mass % of ΣVMS distributed in aeration gas was 15% and that in activated sludge was 78%. Approximately 6.6% of ΣVMS remained in the final effluent. Overall, partitioning onto the activated sludge was the dominant removal mechanism for D4, D5, and D6, whereas volatilization was also an important removal mechanism for D4. Incineration was effective to degrade VMSs in dewatered sludge, with a reduction rate of >99%. Activated carbon treatment removed >99% of VMSs from the aeration gas. In Saitama Prefecture, total emission of ΣVMS via STPs was estimated at 434 kg y-1, 86 kg y-1, and 0.065 kg y-1, to aquatic, atmospheric, and terrestrial environments, respectively, which accounted for 83%, 17%, and 0.01% of the total environmental emissions. Our results indicate that majority of VMSs in dewatered sludge can be removed by incineration and emission of VMSs through incineration ash landfill is negligible.


Subject(s)
Siloxanes/analysis , Waste Disposal, Fluid , Water Pollutants, Chemical/analysis , Environmental Monitoring , Incineration , Japan , Sewage , Volatilization , Wastewater
5.
Mar Pollut Bull ; 136: 276-281, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30509808

ABSTRACT

In this work, the distribution of quaternary ammonium compounds (QACs) in two dated sediment cores, collected from the Pearl River Estuary (PRE) and Tokyo Bay (TB), were investigated to understand the historical input of QACs and their diagenetic behavior in urban estuarine environments. The vertical variation profiles of QAC concentrations showed that benzylalkyldimethyl ammonium compounds (BACs) and dialkyldimethyl ammonium compounds (DADMACs) were widely used during 1970s and 1980s both in China and Japan. The declining environmental concentrations of QACs suggested a compositional change of commodities and the effectiveness of emission control strategies. For the individual QAC homologues, BAC homologues decreased significantly over time, while DADMAC compositions remained relatively stable. The differences in concentration and composition profiles of BACs and DADMACs in the sediment cores provided useful information on the patterns of use of QACs in China and Japan, as well as their diagenetic behaviors in the sediments.


Subject(s)
Geologic Sediments/analysis , Quaternary Ammonium Compounds/analysis , Water Pollutants, Chemical/analysis , Bays , China , Estuaries , Japan , Rivers , Tokyo
6.
Sci Total Environ ; 625: 633-639, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29304501

ABSTRACT

We determined the concentrations of halogenated polycyclic aromatic hydrocarbons (XPAHs), some of which are carcinogenic and/or mutagenic compounds, in fly and bottom ashes and stack gas collected from waste incinerators in Japan. The dominant XPAHs in stack gas were consistent with those in the urban atmosphere. The dioxin-like toxic equivalent (TEQ) concentration ranges of the XPAHs in stack gas, fly ash, and bottom ash were 0.00497-20.5ng-TEQm-3, 0.0541-101ng-TEQg-1, and 0.000914-2.00ng-TEQg-1, respectively. The TEQ concentrations of the XPAHs targeted in this study were higher than those of polychlorinated dibenzo-p-dioxins/dibenzofurans and polychlorinated biphenyls reported in the literature. The annual amounts of XPAHs produced in the waste incinerators ranged from 25.1 to 881g. The mass balance of XPAHs in each waste incinerator was calculated to evaluate the emission rate of XPAHs from waste incinerators. Less than 6.7% of the XPAHs produced in the waste incinerators were emitted into the atmosphere from the facilities in which the flue gas was treated by using a combination of bag filter and activated carbon. In contrast, from the facility using a bag filter only, approximately 50% of the XPAHs produced were emitted into the atmosphere. Thus, the flue gas treatment process appears to be a key determinant of the emission rate of XPAHs produced during waste incineration.

7.
Environ Pollut ; 232: 367-374, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28993023

ABSTRACT

Chlorinated polycyclic aromatic hydrocarbons (ClPAHs) receive increasing attention as hazardous pollutants in terms of the high environmental persistence and toxicities. Ambient concentrations of 24 ClPAHs and 24 PAHs were investigated at 14 sites in the Tokyo Bay area of Japan. Twelve of 18 ClPAH species were detected in air samples, in spite of small sampling volumes. Mean concentrations of total PAHs in gas and particle phases were 5400 and 1400 pg/m3, and mean concentrations of total ClPAHs in gas and particle phases were 40 and 14 pg/m3, respectively. The spatial distributions of both total ClPAH and PAH concentrations indicated heavy pollution at sites in industrial activity areas. Principal component analysis suggested that the dominant sources of gaseous and particulate ClPAHs differed substantially from each other. In particular, gaseous ClPAHs could be produced by specific sources different from those of particulate ClPAHs. However, the dominant sources of particulate ClPAHs could be the same as those of particulate PAHs, including industrial activities such as steel and gas-production plants and natural gas-fired power plants. The influences of spatial relationships among sampling sites were represented using a network analysis. The constructed network showed that ambient ClPAHs and PAHs were dominated by local rather than regional pollution, because there were weaker relationships among nearby sites. Finally, exposure risks for ClPAHs were dominated by 7-chlorobenz[a]anthracene, followed by 9-chlorophenanthrene and 6-chlorobenzo[a]pyrene, and total risk was ∼1/200 that of PAHs.


Subject(s)
Environmental Exposure/statistics & numerical data , Environmental Pollutants/analysis , Environmental Pollution/statistics & numerical data , Polycyclic Aromatic Hydrocarbons/analysis , Air Pollutants/analysis , Environmental Monitoring/methods , Environmental Pollution/analysis , Halogenation , Industry , Japan , Tokyo
8.
J Environ Sci (China) ; 61: 91-96, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29191319

ABSTRACT

Here, we examined the incineration of extruded polystyrene containing hexabromocyclododecane (HBCD) in a pilot-scale incinerator under various combustion temperatures (800-950°C) and flue gas residence times (2-8sec). Rates of HBCD decomposition ranged from 99.996% (800°C, 2sec) to 99.9999% (950°C, 8sec); the decomposition of HBCD, except during the initial stage of combustion (flue gas residence time<2sec), followed a pseudo-first-order kinetics model. An Arrhenius plot revealed that the activation energy and frequency factor of the decomposition of HBCD by combustion were 14.2kJ/mol and 1.69sec-1, respectively. During combustion, 11 brominated polycyclic aromatic hydrocarbons (BrPAHs) were detected as unintentional by-products. Of the 11 BrPAHs detected, 2-bromoanthracene and 1-bromopyrene were detected at the highest concentrations. The mutagenic and carcinogenic BrPAHs 1,5-dibromoanthracene and 1-bromopyrene were most frequently detected in the flue gases analyzed. The total concentration of BrPAHs exponentially increased (range, 87.8-2,040,000ng/m3) with increasing flue gas residence time. Results from a qualitative analysis using gas chromatography/high-resolution mass spectrometry suggest that bromofluorene and bromopyrene (or fluoranthene) congeners were also produced during the combustion.


Subject(s)
Air Pollutants/analysis , Hydrocarbons, Brominated/analysis , Incineration/methods , Polycyclic Aromatic Hydrocarbons/analysis , Air Pollutants/chemistry , Hydrocarbons, Brominated/chemistry , Models, Chemical , Polycyclic Aromatic Hydrocarbons/chemistry
9.
Environ Sci Technol ; 51(24): 14100-14106, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29155574

ABSTRACT

Chlorinated polycyclic aromatic hydrocarbons (ClPAHs) are an emerging class of environmental contaminants, but the sources of these chemicals in the environment are not well-known. In this study, we developed a kinetic model describing the chlorination of PAHs to elucidate the mechanism of formation of ClPAHs during the combustion of organic waste containing chlorinated compounds and/or chlorine in an incinerator. Pyrene (Pyr) and polyvinyl chloride (PVC) were selected as a model PAH and a model organic substrate, respectively. All combustion experiments were carried out using a model furnace operated under similar experimental conditions. Combustion of PVC in the model furnace produced 1-ClPyr, 1,3-Cl2Pyr, 1,6-Cl2Pyr, 1,8-Cl2Pyr, 1,3,6-Cl3Pyr, and 1,3,6,8-Cl4Pyr. The developed model supported the experimental data on the sequential chlorination of pyrene. The rate constants for the formation of mono- to trichlorinated pyrenes were over 30 times of those for the formation of tetra- and penta-chlorinated pyrenes. A qualitative analysis of the formation of highly chlorinated pyrenes based on the comparison of theoretical and empirical isotopic patterns of the mass spectrum revealed that penta- and hexa-chlorinated pyrenes, whose analytical standards were not available, were also produced by the combustion of PVC.


Subject(s)
Polyvinyl Chloride , Pyrenes , Chlorine , Incineration , Polycyclic Aromatic Hydrocarbons
10.
J Chromatogr A ; 1502: 24-29, 2017 Jun 16.
Article in English | MEDLINE | ID: mdl-28473202

ABSTRACT

An ion chromatography with post-column derivatization with 1,5-diphenylcarbazide (IC-DPC) analytical method was modified to enable measurement of trace-level hexavalent chromium (Cr(VI)) in air. One of the difficulties in determining trace levels of Cr(VI) in air with conventional IC-DPC methods is co-elution of the solvent and ion peaks due to high concentrations of ionic compounds in the extract. However, by using gradient elution rather than isocratic elution we were able to fully resolve the Cr(VI) ion peak from the solvent peak without the need for diluting the extract, which would have reduced the minimum quantifiable level of the method. With this method, we were able to detect Cr(VI) in air at concentrations of 5.3ng/m3 (assuming a sampling volume of 1m3 and a final solution volume of 10mL). Recovery tests at three different concentrations of Cr(VI) (50, 250, 1000ng) were performed with or without fly ash; recovery rates at all the concentrations of Cr(VI), with or without fly ash, ranged from 68% to 110% (mean±relative standard deviation, 96%±11%), and there were no differences in recovery rates with respect to the presence or absence of fly ash. Finally, we used the developed method to determine the concentration of Cr(VI) in stack gases collected from eight industrial waste incinerators located in Japan. The concentration of Cr(VI) in the stack gases ranged from below the method quantification limit to 3100ng/m3. The highest concentrations of Cr(VI) detected in the stack gases were two to three orders of magnitude higher than that in ambient air in Japan.


Subject(s)
Air Pollutants/analysis , Chromatography , Chromium/analysis , Environmental Monitoring/methods , Gases/chemistry , Industrial Waste/analysis , Ions/chemistry , Japan
11.
Environ Pollut ; 225: 252-260, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28343715

ABSTRACT

We conducted this study to assess the occurrence, profiles, and toxicity of chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs) and brominated polycyclic aromatic hydrocarbons (Br-PAHs) in e-waste open burning soils (EOBS). In this study, concentrations of 15 PAHs, 26 Cl-PAHs and 14 Br-PAHs were analyzed in EOBS samples. We found that e-waste open burning is an important emission source of Cl-PAHs and Br-PAHs as well as PAHs. Concentrations of total Cl-PAHs and Br-PAHs in e-waste open burning soil samples ranged from 21 to 2800 ng/g and from 5.8 to 520 ng/g, respectively. Compared with previous studies, the mean of total Cl-PAH concentrations of the EOBS samples in this study was higher than that of electronic shredder waste, that of bottom ash, and comparable to fly ash from waste incinerators in Korea and Japan. The mean of total Br-PAH concentrations of the EOBS samples was generally three to four orders of magnitude higher than those in incinerator bottom ash and comparable to incinerator fly ash, although the number of Br-PAH congeners measured differed among studies. We also found that the Cl-PAH and Br-PAH profiles were similar among all e-waste open burning soil samples but differed from those in waste incinerator fly ash. The profiles and principal component analysis results suggested a unique mechanism of Cl-PAH and Br-PAH formation in EOBS. In addition, the Cl-PAHs and Br-PAHs showed high toxicities equivalent to PCDD/Fs measured in same EOBS samples when calculated based on their relative potencies to benzo[a]pyrene. Along with chlorinated and brominated dioxins and PAHs, Cl-PAHs and Br-PAHs are important environmental pollutants to investigate in EOBS.


Subject(s)
Electronic Waste/analysis , Incineration , Polycyclic Aromatic Hydrocarbons/toxicity , Soil Pollutants/toxicity , Coal Ash/analysis , Environmental Pollutants/analysis , Halogenation , Japan , Polycyclic Aromatic Hydrocarbons/analysis , Republic of Korea , Soil/chemistry , Soil Pollutants/analysis
12.
Sci Total Environ ; 586: 56-65, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28208097

ABSTRACT

Surface waters including river water and effluent from sewage treatment plants (STPs) were collected from Tokyo Bay watershed, Japan, and analyzed for seven cyclic and linear volatile methylsiloxanes (VMSs), i.e., D3, D4, D5, D6, L3, L4, and L5 by an optimized purge and trap extraction method. The total concentrations of seven VMSs (ΣVMS) in river water ranged from <4.9 to 1700ng/L (mean: 220ng/L). The individual mean concentrations of cyclic VMSs in surface waters were; 10ng/L for D3, 13ng/L for D4, 180ng/L for D5, and 18ng/L for D6. The concentrations of ΣVMS determined in STP effluents varied widely from 99 to 2500ng/L and the individual mean concentrations were 21ng/L for D3, 27ng/L for D4, 540ng/L for D5, and 45ng/L for D6. D5, which is widely used in personal-care products, was found to be the most abundant compound in both river water and STP effluent. Linear VMSs were detected at much lower frequency and concentrations than those of cyclic VMSs. The measured concentrations of D4 were below the no-observed effect concentration (NOEC). The annual emission of ΣVMS through STPs into Tokyo Bay watershed was estimated at 2300kg. Our results indicate widespread distribution of VMSs in Tokyo Bay watershed and the influence of domestic wastewater discharges as a source of VMSs in the aquatic environment.

13.
Environ Pollut ; 224: 357-367, 2017 May.
Article in English | MEDLINE | ID: mdl-28209434

ABSTRACT

To examine the impacts of urbanization and industrialization on the coastal environment, and assess the effectiveness of control measures on the contamination by chlorinated paraffins (CPs) in East Asia, surface and core sediments were sampled from the urbanized coastal zones in China and Japan (i.e., Pearl River Delta (PRD), Hong Kong waters and Tokyo Bay) and analyzed for short-chain (SCCPs) and medium-chain CPs (MCCPs). Much higher concentrations of CPs were found in the industrialized PRD than in adjacent Hong Kong waters. Significant correlation between CP concentration and population density in the coastal district of Hong Kong was observed (r2 = 0.72 for SCCPs and 0.55 for MCCPs, p < 0.05), highlighting the effect of urbanization. By contrast, a relatively lower pollution level of CPs was detected in Tokyo Bay. More long-chain groups within SCCPs in the PRD than in Hong Kong waters and Tokyo Bay implied the effect of industrialization. Comparison of temporal trends between Hong Kong outer harbor with Tokyo Bay shows the striking difference in historical deposition of CPs under different regulatory situations in China and Japan. For the first time, the declining CP concentrations in Tokyo Bay, Japan, attest to the effectiveness of emissions controls.


Subject(s)
Environmental Monitoring , Environmental Pollution/analysis , Geologic Sediments/analysis , Hydrocarbons, Chlorinated/analysis , Paraffin/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , China , Japan , Spatio-Temporal Analysis , Urbanization
14.
Environ Sci Technol ; 47(14): 7615-23, 2013 Jul 16.
Article in English | MEDLINE | ID: mdl-23763473

ABSTRACT

Chlorinated polycyclic aromatic hydrocarbons (ClPAHs) have been reported to be formed during incineration processes. Despite dioxin-like toxicities of ClPAHs, little is known on the occurrence of these chemicals in the environment. In this study, concentrations of 24-h airborne PM10 and PM2.5-associated ClPAHs and their corresponding parent PAHs were monitored from October 2011 to March 2012 in a suburban area in Shanghai, China. In addition, daytime and nighttime particle samples were collected for 7 days in April from the same sampling site. Twelve of twenty ClPAH congeners were found in PM10 and PM2.5 at concentrations ranging from 2.45 to 47.7 pg/m(3) with an average value of 12.3 pg/m(3) for PM10, and from 1.34 to 22.3 pg/m(3) with an average value of 9.06 pg/m(3) for PM2.5. Our results indicate that ClPAHs are ubiquitous in inhalable fine particles. The concentrations of ∑ClPAHs and specific congeners such as 9-ClPhe, 3-ClFlu, 1-ClPyr, 7-ClBaA, and 6-ClBaP in particles collected during nighttime were higher than those collected during daytime, which suggests not only diffusion of ClPAHs in air by atmospheric mixing but also photochemical degradation during daylight hours. Among the individual ClPAHs determined, 6-ClBaP, 1-ClPyr, and 9-ClPhe were the dominant compounds in PM10 and PM2.5. The percent composition of 6-ClBaP, 1-ClPyr, 7-ClBaA, and 3-ClFlu between PM10 and PM2.5 was similar. Significant positive correlations were found between concentrations of ClPAHs and their corresponding parent PAHs, particle mass, and total organic carbon (organic carbon plus elemental carbon), indicating that ClPAHs are sorbed onto carbonaceous matter of PM. Concentrations of parent PAHs predicted by multiple linear regression models with PM mass, total organic carbon, temperature, and relative humidity as variables reflected the measured concentrations with a strong coefficient of determination of 0.917 and 0.946 for PM10 and PM2.5, respectively. However, the models generated to predict ClPAH concentrations in PM did not yield satisfactory results, which suggested the differences in physical-chemical properties and formation processes between ClPAHs and their corresponding parent PAHs. 7-ClBaA and 6-ClBaP collectively accounted for the preponderance of the total dioxin-like TEQ concentrations of ClPAHs (TEQClPAH) in PM samples. Exposure to toxic compounds such as ClPAHs and PAHs present in PM2.5 can be related to adverse health outcomes in people.


Subject(s)
Hydrocarbons, Chlorinated/chemistry , Particulate Matter , Polycyclic Compounds/chemistry , China , Incineration , Quality Control
15.
Environ Int ; 55: 25-32, 2013 May.
Article in English | MEDLINE | ID: mdl-23506970

ABSTRACT

Perfluorinated alkyl substances (PFASs) have been found widely in the environment including remote marine locations. The mode of transport of PFASs to remote marine locations is a subject of considerable scientific interest. Assessment of distribution of PFASs in wet precipitation samples (i.e., rainfall and snow) collected over an area covering continental, coastal, and open ocean will enable an understanding of not only the global transport but also the regional transport of PFASs. Nevertheless, it is imperative to examine the representativeness and suitability of wet precipitation matrixes to allow for drawing conclusions on the transport PFASs. In this study, we collected wet precipitation samples including rainfall, surface snow, and snow core from several locations in Japan to elucidate the suitability of these matrixes for describing local and regional transport of PFASs. Rain water collected at various time intervals within a single rainfall event showed high fluxes of PFASs in the first 1-mm deposition. The scavenging rate of PFASs by wet deposition varied depending on the fluorocarbon chain length of PFAS. The depositional fluxes of PFASs measured for continental (Tsukuba, Japan) and open ocean (Pacific Ocean, 1000km off Japanese coast) locations were similar, on the order of a few nanograms per square meter. The PFAS profiles in "freshly" deposited and "aged" (deposited on the ground for a few days) snow samples taken from the same location varied considerably. The freshly deposited snow represents current atmospheric profiles of PFASs, whereas the aged snow sample reflects sequestration of local sources of PFASs from the atmosphere. Post-depositional modifications in PFAS profiles were evident, suggesting reactions of PFASs on snow/ice surface. Transformation of precursor chemicals such as fluorotelomer alcohols into perfluoroalkylcarboxylates is evident on snow surface. Snow cores have been used to evaluate time trends of PFAS contamination in remote environments. Snow collected at various depths from a core of up to 7.7m deep, at Mt. Tateyama (2450m), Japan, showed the highest concentrations of PFASs in the surface layer and the concentrations decreased with increasing depth for most PFASs, except for perfluorobutanesulfonate (PFBS). Downward movement of highly water soluble PFASs such as PFBS, following melting and freezing cycles of snow, was evident from the analysis of snow core.


Subject(s)
Air Pollutants/analysis , Atmosphere/chemistry , Fluorocarbons/analysis , Rain/chemistry , Snow/chemistry , Air Movements , Climate , Environmental Monitoring , Japan , Models, Chemical , Pacific Ocean
16.
Sci Total Environ ; 447: 46-55, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23376515

ABSTRACT

Perfluoroalkyl substances (PFAS) have been globally detected in various environmental matrices, yet their fate and transport to the Arctic is still unclear, especially for the European Arctic. In this study, concentrations of 17 PFAS were quantified in two ice cores (n=26), surface snow (n=9) and surface water samples (n=14) collected along a spatial gradient in Svalbard, Norway. Concentrations of selected ions (Na(+), SO4(2-), etc.) were also determined for tracing the origins and sources of PFAS. Perfluorobutanoate (PFBA), perfluorooctanoate (PFOA) and perfluorononanoate (PFNA) were the dominant compounds found in ice core samples. Taking PFOA, PFNA and perfluorooctane-sulfonate (PFOS) as examples, higher concentrations were detected in the middle layers of the ice cores representing the period of 1997-2000. Lower concentrations of C8-C12 perfluorocarboxylates (PFCAs) were detected in comparison with concentrations measured previously in an ice core from the Canadian Arctic, indicating that contamination levels in the European Arctic are lower. Average PFAS concentrations were found to be lower in surface snow and melted glacier water samples, while increased concentrations were observed in river water downstream near the coastal area. Perfluorohexanesulfonate (PFHxS) was detected in the downstream locations, but not in the glacier, suggesting existence of local sources of this compound. Long-range atmospheric transport of PFAS was the major deposition pathway for the glaciers, while local sources (e.g., skiing activities) were identified in the downstream locations.


Subject(s)
Hydrocarbons, Fluorinated/analysis , Ice Cover/chemistry , Water Pollutants, Chemical/analysis , Alkanesulfonic Acids/analysis , Arctic Regions , Canada , Caprylates/analysis , Environmental Monitoring/methods , Fluorocarbons/analysis , Snow , Sulfonic Acids/analysis , Svalbard
17.
Article in English | MEDLINE | ID: mdl-22416863

ABSTRACT

Under a small project, one-year-old Scots Pine needles collected from 25 spatially distant sites were examined in monitoring the extent of environmental diffusion and possible sources of polychlorinated biphenyls (PCBs) in ambient air, their depositions and uptake by plants in Poland. The congener-specific determination of planar and non-planar chlorobiphenyls was achieved by isotope dilution HRGC-HRMS method after a highly refined extraction on multi-layer column of silica gel and alumina layer and clean-up, and fractionations, followed by Hypercarb-HPLC and PYE-HPLC sub-fractionation steps. Contents of 117 chlorobiphenyls determined in pine needles varied for the 25 sites studied and is between 2.7 and 49 ng/g wet weight. The PCBs pollution and congener-specific composition of pine needles to some degree varied according to the site or region surveyed depending on population density and industrialization. Many of the country-side areas showed lower concentrations between 2.7 and 8.9 ng/g ww. Pine needles in areas close to well populated and industrial regions of Opole, Kutno, Wloclawek and Debica showed the highest PCB pollution with concentrations varying between 30 and 49 ng/g ww. The Kutno site showed the highest pollution and this fact probably can be explained by possible emission from transformer manufactures located at some distance west of the Kutno area. Factor analysis (FA) and depending on the site revealed on relationship of PCBs composition of pine needles both with highly chlorinated PCB constituents of the mixtures such as Chlorofen, Aroclor 1254, Aroclor 1268 and Sovol but also of lower chlorinated PCB constituents of Aroclor 1242, Aroclor 1248, Clophen A40 or Delor 103. Thermal processes were considered a less significant source of PCBs in ambient air over Poland compared to evaporative sources related to technical PCB formulations. Supplemental materials are available for this article. Go to the publisher's online edition of Journal of Environmental Science and Health: Part A to view the free supplemental file.


Subject(s)
Environmental Pollutants/analysis , Pinus sylvestris/chemistry , Plant Leaves/chemistry , Polychlorinated Biphenyls/analysis , Environmental Monitoring , Poland
18.
Environ Sci Technol ; 45(17): 7517-24, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21809834

ABSTRACT

Distribution, characteristics, and global inventory of dioxins (polychlorinated dibenzo-p-dioxins [PCDDs] and dibenzofurans [PCDFs] and dioxin like polychlorinated biphenyls) in kaolin clays collected from 10 countries were investigated. Dioxins were found in all kaolin clay samples analyzed, at total concentrations ranging from 1.2 pg/g (Brazil) to 520,000 pg/g (USA). Dioxin concentrations in kaolin clays from a few countries (e.g., Brazil and UK) were lower than those reported for background soils in Japan. Dioxin profiles in kaolin clays were characterized by the domination of the congener octachlorodibenzo-p-dioxin (OCDD), and the concentrations of other congeners decreased in the order of reduction in the levels of chlorination. Furthermore, specific distribution of congeners, with predominant proportions of 1,4,6,9-substituted PCDDs within each homologue group, was found in most clay samples. The ratios of concentrations of PCDD to PCDF and 1,2,3,7,8,9-HxCDD to 1,2,3,6,7,8-HxCDD indicated differences in the profiles found for anthropogenic sources (including pentachlorophenol) and kaolin clays. Concentrations of PCDD/Fs in kaolin clays, except for American ball clays, did not exceed the environmental criteria set by the Law Concerning Special Measures against Dioxins in Japan. Based on the average concentrations measured in our study, inventories of PCDD/Fs from the production/usage of ball clays on a global scale were estimated to be 650 kg/yr; the corresponding value on a TEQ basis is 2400 g-TEQ/yr. More than 480 kg of OCDD is estimated to be released annually from the production of kaolin clays worldwide, suggesting that kaolin clays can be a major contributor for additional source of dioxins, especially OCDD, in the environment.


Subject(s)
Benzofurans/analysis , Dioxins/analysis , Kaolin/chemistry , Polychlorinated Biphenyls/analysis , Soil Pollutants/analysis , Animals , Environmental Monitoring/methods , Humans
19.
J Chromatogr A ; 1218(21): 3224-32, 2011 May 27.
Article in English | MEDLINE | ID: mdl-21316690

ABSTRACT

A method for the analysis of chlorinated and brominated polycyclic aromatic hydrocarbon (Cl-/Br-PAHs) congeners in environmental samples, such as a soil extract, by comprehensive two-dimensional gas chromatography coupled to a high resolution time-of-flight mass spectrometry (GC×GC-HRTOF-MS) is described. The GC×GC-HRTOF-MS method allowed highly selective group type analysis in the two-dimensional (2D) mass chromatograms with a very narrow mass window (e.g. 0.02Da), accurate mass measurements for the full mass range (m/z 35-600) in GC×GC mode, and the calculation of the elemental composition for the detected Cl-/Br-PAH congeners in the real-world sample. Thirty Cl-/Br-PAHs including higher chlorinated 10 PAHs (e.g. penta, hexa and hepta substitution) and ClBr-PAHs (without analytical standards) were identified with high probability in the soil extract. To our knowledge, highly chlorinated PAHs, such as C(14)H(3)Cl(7) and C(16)H(3)Cl(7), and ClBr-PAHs, such as C(14)H(7)Cl(2)Br and C(16)H(8)ClBr, were found in the environmental samples for the first time. Other organohalogen compounds; e.g. polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs), and polychlorinated dibenzofurans (PCDFs) were also detected. This technique provides exhaustive analysis and powerful identification for the unknown and unconfirmed Cl-/Br-PAH congeners in environmental samples.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Hydrocarbons, Brominated/analysis , Hydrocarbons, Chlorinated/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Soil/chemistry , Hydrocarbons, Brominated/chemistry , Hydrocarbons, Chlorinated/chemistry , Polycyclic Aromatic Hydrocarbons/chemistry , Reproducibility of Results , Sensitivity and Specificity , Soil Pollutants/analysis , Soil Pollutants/chemistry
20.
Mar Pollut Bull ; 62(4): 870-3, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21316713

ABSTRACT

Isomer-specific concentrations of nonylphenol (NP) and their predicted estrogenic potency were investigated in Sri Lankan waters for the first time. The total concentration of 13 NP isomers ranged from 90 to 1835 ng/L, while the predicted estrogenic equivalent concentration ranged from 0.072 to 1.38 ng 17ß-estradiol (E2)/L. Bire Lake, located in the central area of the commercial capital, Colombo, had the highest contamination among the studied locations. These data show that NP levels in Sri Lankan waters are well within the recently reported concentrations in other regions of the world. The spatial differences in NP concentrations suggest that NP contamination in Sri Lanka may be widespread, and comprehensive study is vital.


Subject(s)
Fresh Water/chemistry , Phenols/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Isomerism , Sri Lanka , Water Pollution, Chemical/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...