Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(10): e2317735121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38408246

ABSTRACT

Chimeric antigen receptor (CAR) T cell dysfunction is a major barrier to achieving lasting remission in hematologic cancers, especially in chronic lymphocytic leukemia (CLL). We have shown previously that Δ133p53α, an endogenous isoform of the human TP53 gene, decreases in expression with age in human T cells, and that reconstitution of Δ133p53α in poorly functional T cells can rescue proliferation [A. M. Mondal et al., J. Clin. Invest. 123, 5247-5257 (2013)]. Although Δ133p53α lacks a transactivation domain, it can form heterooligomers with full-length p53 and modulate the p53-mediated stress response [I. Horikawa et al., Cell Death Differ. 24, 1017-1028 (2017)]. Here, we show that constitutive expression of Δ133p53α potentiates the anti-tumor activity of CD19-directed CAR T cells and limits dysfunction under conditions of high tumor burden and metabolic stress. We demonstrate that Δ133p53α-expressing CAR T cells exhibit a robust metabolic phenotype, maintaining the ability to execute effector functions and continue proliferating under nutrient-limiting conditions, in part due to upregulation of critical biosynthetic processes and improved mitochondrial function. Importantly, we show that our strategy to constitutively express Δ133p53α improves the anti-tumor efficacy of CAR T cells generated from CLL patients that previously failed CAR T cell therapy. More broadly, our results point to the potential role of the p53-mediated stress response in limiting the prolonged antitumor functions required for complete tumor clearance in patients with high disease burden, suggesting that modulation of the p53 signaling network with Δ133p53α may represent a translationally viable strategy for improving CAR T cell therapy.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/methods , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Antigens, CD19 , Cell- and Tissue-Based Therapy , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism
2.
Res Sq ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37986881

ABSTRACT

Mutations effects on p53 isoforms' activities remain largely unknown, although they are mutated in 92% of TP53 mutant cancers. Therefore, exploring the effect of mutations on p53 isoforms activities is a critical, albeit unexplored area in the p53 field. In this article, we report for the first time a mutant Δ133p53α-specific pathway which increases IL4I1 and IDO1 expression and activates AHR, a tumor-promoting mechanism. Accordingly, mutant Δ133p53α R273H increases glioblastoma cancer cells proliferation and invasion while the WT does not. Furthermore, while WT Δ133p53α reduces apoptosis to promote DNA repair, the mutant also reduces apoptosis but fails to maintain genomic stability.Furthermore, both WT and mutant Δ133p53α reduce cellular senescence in a senescence inducer-dependent manner (temozolomide or radiation) because they regulate different senescence-associated target genes. Hence, WT Δ133p53α rescues temozolomide-induced but not radiation-induced senescence, while mutant Δ133p53α R273H rescues radiation-induced but not temozolomide-induced senescence. Lastly, using TCGA data, we determined that IL4I1, IDO1 and AHR are significantly higher in GBMs compared to LGGs. IL4I1 expression is increased in mutant TP53 LGGs and GBMs, although only significantly in LGG. Importantly, high expression of all three genes in LGG and IL4I1 in GBM is significantly associated with poorer patients' survival. These data show that, compared to WT Δ133p53α, R273H mutation reorientates its activities toward carcinogenesis and activates the oncogenic IL4I1/IDO1/AHR pathway, a potential prognostic marker and therapeutic target in GBM by combining drugs specifically modulating Δ133p53α expression and IDO1/Il4I1/AHR inhibitors.

3.
Neuroscience ; 498: 190-202, 2022 08 21.
Article in English | MEDLINE | ID: mdl-35716965

ABSTRACT

Cellular senescence is an important contributor to aging and age-related diseases such as Alzheimer's disease (AD). Senescent cells are characterized by a durable cell proliferation arrest and the acquisition of a proinflammatory senescence-associated secretory phenotype (SASP), which participates in the progression of neurodegenerative disorders. Clearance of senescent glial cells in an AD mouse model prevented cognitive decline suggesting pharmacological agents targeting cellular senescence might provide novel therapeutic approaches for AD. Δ133p53α, a natural protein isoform of p53, was previously shown to be a negative regulator of cellular senescence in primary human astrocytes, with clinical implications from its diminished expression in brain tissues from AD patients. Here we show that treatment of proliferating human astrocytes in culture with amyloid-beta oligomers (Aß), an endogenous pathogenic agent of AD, results in reduced expression of Δ133p53α, as well as induces the cells to become senescent and express proinflammatory SASP cytokines such as IL-6, IL-1ß and TNFα. Our data suggest that Aß-induced astrocyte cellular senescence is associated with accelerated DNA damage, and upregulation of full-length p53 and its senescence-inducing target gene p21WAF1. We also show that exogenously enhanced expression of Δ133p53α rescues human astrocytes from Aß-induced cellular senescence and SASP through both protection from DNA damage and dominant-negative inhibition of full-length p53, leading to inhibition of Aß-induced, astrocyte-mediated neurotoxicity. The results presented here demonstrate that Δ133p53α manipulation could modulate cellular senescence in the context of AD, possibly opening new therapeutic avenues.


Subject(s)
Alzheimer Disease , Neurotoxicity Syndromes , Amyloid beta-Peptides , Astrocytes , Cellular Senescence , Humans , Tumor Suppressor Protein p53
4.
Cell Cycle ; 20(8): 752-764, 2021 04.
Article in English | MEDLINE | ID: mdl-33818291

ABSTRACT

Tau accumulation is a core component of Alzheimer's disease and other neurodegenerative tauopathies. While tau's impact on neurons is a major area of research, the effect of extracellular tau on astrocytes is largely unknown. This article summarizes our recent studies showing that astrocyte senescence plays a critical role in neurodegenerative diseases and integrates extracellular tau into the regulatory loop of senescent astrocyte-mediated neurotoxicity. Human astrocytes in vitro undergoing senescence were shown to acquire the inflammatory senescence-associated secretory phenotype (SASP) and toxicity to neurons, which may recapitulate aging- and disease-associated neurodegeneration. Here, we show that human astrocytes exposed to extracellular tau in vitro also undergo cellular senescence and acquire a neurotoxic SASP (e.g. IL-6 secretion), with oxidative stress response (indicated by upregulated NRF2 target genes) and a possible activation of inflammasome (indicated by upregulated ASC and IL-1ß). These findings suggest that senescent astrocytes induced by various conditions and insults, including tau exposure, may represent a therapeutic target to inhibit or delay the progression of neurodegenerative diseases. We also discuss the pathological activity of extracellular tau in microglia and astrocytes, the disease relevance and diversity of tau forms, therapeutics targeting senescence in neurodegeneration, and the roles of p53 and its isoforms in astrocyte-mediated neurotoxicity and neuroprotection.


Subject(s)
Astrocytes/metabolism , Cellular Senescence/physiology , Neurodegenerative Diseases/metabolism , Senescence-Associated Secretory Phenotype/physiology , tau Proteins/toxicity , Astrocytes/drug effects , Astrocytes/pathology , Cells, Cultured , Cellular Senescence/drug effects , Humans , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/pathology , Senescence-Associated Secretory Phenotype/drug effects
5.
BMC Cancer ; 21(1): 310, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33761896

ABSTRACT

BACKGROUND: Chromosomal inversions involving anaplastic lymphoma kinase (ALK) and echinoderm microtubule associated protein like 4 (EML4) generate a fusion protein EML4-ALK in non-small cell lung cancer (NSCLC). The understanding of EML4-ALK function can be improved by a functional study using normal human cells. METHODS: Here we for the first time conduct such study to examine the effects of EML4-ALK on cell proliferation, cellular senescence, DNA damage, gene expression profiles and transformed phenotypes. RESULTS: The lentiviral expression of EML4-ALK in mortal, normal human fibroblasts caused, through its constitutive ALK kinase activity, an early induction of cellular senescence with accumulated DNA damage, upregulation of p16INK4A and p21WAF1, and senescence-associated ß-galactosidase (SA-ß-gal) activity. In contrast, when EML4-ALK was expressed in normal human fibroblasts transduced with telomerase reverse transcriptase (hTERT), which is activated in the vast majority of NSCLC, the cells showed accelerated proliferation and acquired anchorage-independent growth ability in soft-agar medium, without accumulated DNA damage, chromosome aberration, nor p53 mutation. EML4-ALK induced the phosphorylation of STAT3 in both mortal and hTERT-transduced cells, but RNA sequencing analysis suggested that the different signaling pathways contributed to the different phenotypic outcomes in these cells. While EML4-ALK also induced anchorage-independent growth in hTERT-immortalized human bronchial epithelial cells in vitro, the expression of EML4-ALK alone did not cause detectable in vivo tumorigenicity in immunodeficient mice. CONCLUSIONS: Our data indicate that the expression of hTERT is critical for EML4-ALK to manifest its in vitro transforming activity in human cells. This study provides the isogenic pairs of human cells with and without EML4-ALK expression.


Subject(s)
Carcinogenesis/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Oncogene Proteins, Fusion/metabolism , Telomerase/metabolism , Animals , Carcinogenesis/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line , Cell Proliferation/genetics , Cellular Senescence/genetics , DNA Damage , Disease Models, Animal , Epithelial Cells , Female , Fibroblasts , Gene Expression Regulation, Neoplastic , Genetic Vectors/genetics , Humans , Lentivirus/genetics , Lung Neoplasms/pathology , Mice , Oncogene Proteins, Fusion/genetics , RNA-Seq , Telomerase/genetics , Telomere Homeostasis/genetics , Transfection
6.
Cancer Res ; 80(23): 5164-5165, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33268555

ABSTRACT

Aging and death of cells (cellular senescence and apoptosis, respectively), triggered by or associated with cellular stress and DNA damage, impair organ function and homeostasis, leading to organismal aging and death. On the other hand, defects in physiologic regulations of cellular aging and death (escape from cellular senescence and failed apoptosis of severely damaged cells) contribute to uncontrolled cell division and genetic instability in cancer. In an oversimplified scenario, p53, an inducer of cellular senescence and apoptosis, may thus unfavorably contribute to aging and favorably suppress tumorigenesis. However, physiologic mechanisms should exist and therapeutic approaches may be developed to balance between aging and tumor suppression, for example, by differentially regulating cellular senescence, apoptosis, and other p53-mediated biological processes, such as DNA repair, autophagy, and energy metabolism. Possible mechanisms for such differential regulation of different subsets of p53 target genes may involve posttranslational modifications (e.g., phosphorylation and acetylation) and DNA binding cooperativity of p53. In this issue of Cancer Research, Timofeev and colleagues show that a previously uncharacterized phosphorylation in the p53 core DNA-binding domain regulates the DNA binding cooperativity and transcriptional activity of p53. Their mice deficient for this p53 phosphorylation were resistant to spontaneous and induced tumorigenesis, while they had shortened lifespan, but did not show progeria-like phenotypes. Prompted by this study, research on p53, aging, and cancer will explore balancing and differentiating different p53 activities toward a challenging goal of achieving longevity with no cancer.See related article by Timofeev et al., p. 5231.


Subject(s)
Longevity , Tumor Suppressor Protein p53 , Aging/genetics , Animals , Apoptosis , Cellular Senescence , DNA , DNA Damage , Mice , Phosphorylation , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
7.
Cancers (Basel) ; 12(11)2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33218139

ABSTRACT

The TP53 gene is a critical tumor suppressor and key determinant of cell fate which regulates numerous cellular functions including DNA repair, cell cycle arrest, cellular senescence, apoptosis, autophagy and metabolism. In the last 15 years, the p53 pathway has grown in complexity through the discovery that TP53 differentially expresses twelve p53 protein isoforms in human cells with both overlapping and unique biologic activities. Here, we summarize the current knowledge on the Δ133p53 isoforms (Δ133p53α, Δ133p53ß and Δ133p53γ), which are evolutionary derived and found only in human and higher order primates. All three isoforms lack both of the transactivation domains and the beginning of the DNA-binding domain. Despite the absence of these canonical domains, the Δ133p53 isoforms maintain critical functions in cancer, physiological and premature aging, neurodegenerative diseases, immunity and inflammation, and tissue repair. The ability of the Δ133p53 isoforms to modulate the p53 pathway functions underscores the need to include these p53 isoforms in our understanding of how the p53 pathway contributes to multiple physiological and pathological mechanisms. Critically, further characterization of p53 isoforms may identify novel regulatory modes of p53 pathway functions that contribute to disease progression and facilitate the development of new therapeutic strategies.

8.
Cancer Cell ; 38(5): 598-601, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33038939

ABSTRACT

During the COVID-19 pandemic, research on "cytokine storms" has been reinvigorated in the field of infectious disease, but it also has particular relevance to cancer research. Interleukin-6 (IL-6) has emerged as a key component of the immune response to SARS-CoV-2, such that the repurposing of anti-IL-6 therapeutics for COVID-19 is now a major line of investigation, with several ongoing clinical trials. We lay a framework for understanding the role of IL-6 in the context of cancer research and COVID-19 and suggest how lessons learned from cancer research may impact SARS-CoV-2 research and vice versa.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/complications , Cytokines/blood , Inflammation/etiology , Neoplasms/immunology , Pneumonia, Viral/complications , Severity of Illness Index , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cytokines/immunology , Humans , Inflammation/pathology , Neoplasms/blood , Neoplasms/virology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2
9.
Vet Pathol ; 57(6): 747-757, 2020 11.
Article in English | MEDLINE | ID: mdl-32744147

ABSTRACT

Cellular senescence is a cell cycle arrest in damaged or aged cells. Although this represents a critical mechanism of tumor suppression, persistence of senescent cells during aging induces chronic inflammation and tissue dysfunction through the adoption of the senescence-associated secretory phenotype (SASP). This has been shown to promote the progression of age-associated diseases such as Alzheimer's disease, pulmonary fibrosis, and atherosclerosis. As the global population ages, the role of cellular senescence in disease is becoming a more critical area of research. In this review, mechanisms, biomarkers, and pathology of cellular senescence and SASP are described with a brief discussion of literature supporting a role for cellular senescence in veterinary diseases. Cell culture and mouse models used in senescence studies are also reviewed including the senescence-accelerated mouse-prone (SAMP), senescence pathway knockout mice (p53, p21 [CDKN1A], and p16 [CDKN2A]), and the more recently developed senolysis mice, which allow for direct visualization and elimination (or lysis) of senescent cells in live mice (p16-3MR and INK-ATTAC). These and other mouse models have demonstrated the importance of cellular senescence in embryogenesis and wound healing but have also identified a therapeutic benefit for targeting persistent senescent cells in age-associated diseases including neurodegeneration, diabetes, and cardiac fibrosis.


Subject(s)
Cellular Senescence , Rodent Diseases , Aging , Animals , Biomarkers , Disease Models, Animal , Mice , Mice, Knockout
10.
Carcinogenesis ; 41(8): 1017-1029, 2020 08 12.
Article in English | MEDLINE | ID: mdl-32619002

ABSTRACT

Cellular senescence and the associated secretory phenotype (SASP) promote disease in the aged population. Targeting senescent cells by means of removal, modulation of SASP or through cellular reprogramming represents a novel therapeutic avenue for treating cancer- and age-related diseases such as neurodegeneration, pulmonary fibrosis and renal disease. Cellular senescence is partly regulated by the TP53 gene, a critical tumor suppressor gene which encodes 12 or more p53 protein isoforms. This review marks a significant milestone of 40 years of Carcinogenesis publication history and p53 research and 15 years of p53 isoform research. The p53 isoforms are produced through initiation at alternative transcriptional and translational start sites and alternative mRNA splicing. These truncated p53 isoform proteins are endogenously expressed in normal human cells and maintain important functional roles, including modulation of full-length p53-mediated cellular senescence, apoptosis and DNA repair. In this review, we discuss the mechanisms and functions of cellular senescence and SASP in health and disease, the regulation of cellular senescence by p53 isoforms, and the therapeutic potential of targeting cellular senescence to treat cancer- and age-associated diseases.


Subject(s)
Aging , Antineoplastic Agents/pharmacology , Carcinogenesis/drug effects , Cellular Senescence/physiology , Neoplasms/drug therapy , Neoplasms/pathology , Tumor Suppressor Protein p53/physiology , Alternative Splicing , Animals , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Apoptosis/genetics , Apoptosis/physiology , Carcinogenesis/pathology , Cellular Reprogramming/drug effects , Cellular Reprogramming/genetics , Cellular Reprogramming/physiology , Cellular Senescence/drug effects , Cellular Senescence/genetics , DNA Repair/drug effects , DNA Repair/genetics , DNA Repair/physiology , Humans , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/pathology , Protein Isoforms/genetics , Protein Isoforms/physiology , Tumor Suppressor Protein p53/genetics
11.
Neuro Oncol ; 21(4): 474-485, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30615147

ABSTRACT

BACKGROUND: Cellular senescence and the senescence-associated secretory phenotype (SASP) may contribute to the development of radiation therapy-associated side effects in the lung and blood vessels by promoting chronic inflammation. In the brain, inflammation contributes to the development of neurologic disease, including Alzheimer's disease. In this study, we investigated the roles of cellular senescence and Δ133p53, an inhibitory isoform of p53, in radiation-induced brain injury. METHODS: Senescent cell types in irradiated human brain were identified with immunohistochemical labeling of senescence-associated proteins p16INK4A and heterochromatin protein Hp1γ in 13 patient cases, including 7 irradiated samples. To investigate the impact of radiation on astrocytes specifically, primary human astrocytes were irradiated and examined for expression of Δ133p53 and induction of SASP. Lentiviral expression of ∆133p53 was performed to investigate its role in regulating radiation-induced cellular senescence and astrocyte-mediated neuroinflammation. RESULTS: Astrocytes expressing p16INK4A and Hp1γ were identified in all irradiated tissues, were increased in number in irradiated compared with untreated cancer patient tissues, and had higher labeling intensity in irradiated tissues compared with age-matched controls. Human astrocytes irradiated in vitro also experience induction of cellular senescence, have diminished Δ133p53, and adopt a neurotoxic phenotype as demonstrated by increased senescence-associated beta-galactosidase activity, p16INK4A, and interleukin (IL)-6. In human astrocytes, Δ133p53 inhibits radiation-induced senescence, promotes DNA double-strand break repair, and prevents astrocyte-mediated neuroinflammation and neurotoxicity. CONCLUSIONS: Restoring expression of the endogenous p53 isoform, ∆133p53, protects astrocytes from radiation-induced senescence, promotes DNA repair, and inhibits astrocyte-mediated neuroinflammation.


Subject(s)
Astrocytes/radiation effects , Cellular Senescence/radiation effects , Radiation Injuries/metabolism , Tumor Suppressor Protein p53/metabolism , Astrocytes/metabolism , Brain Neoplasms/radiotherapy , Cells, Cultured , Cranial Irradiation/adverse effects , Humans , Protein Isoforms/metabolism
12.
Cell Death Dis ; 9(7): 750, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29970881

ABSTRACT

We previously developed the technique of conditional reprogramming (CR), which allows primary epithelial cells from fresh or cryopreserved specimens to be propagated long-term in vitro, while maintaining their genetic stability and differentiation potential. This method requires a combination of irradiated fibroblast feeder cells and a Rho-associated kinase (ROCK) inhibitor. In the present study, we demonstrate increased levels of full-length p53 and its natural isoform, Δ133p53α, in conditionally reprogrammed epithelial cells from primary prostate, foreskin, ectocervical, and mammary tissues. Increased Δ133p53α expression is critical for CR since cell proliferation is rapidly inhibited following siRNA knockdown of endogenous Δ133p53α. Importantly, overexpression of Δ133p53α consistently delays the onset of cellular senescence of primary cells when cultured under non-CR conditions in normal keratinocyte growth medium (KGM). More significantly, the combination of Δ133p53α overexpression and ROCK inhibitor, without feeder cells, enables primary epithelial cells to be propagated long-term in vitro. We also show that Δ133p53α overexpression induces hTERT expression and telomerase activity and that siRNA knockdown of hTERT causes rapid inhibition of cell proliferation, indicating a critical role of hTERT for mediating the effects of Δ133p53α. Altogether, these data demonstrate a functional and regulatory link between p53 pathways and hTERT expression during the conditional reprogramming of primary epithelial cells.


Subject(s)
Cellular Reprogramming/physiology , Epithelial Cells/metabolism , Protein Isoforms/metabolism , Tumor Suppressor Protein p53/metabolism , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Line , Cell Proliferation/genetics , Cell Proliferation/physiology , Cells, Cultured , Cellular Reprogramming/genetics , Fibroblasts/metabolism , Humans , Immunoblotting , Male , Protein Isoforms/genetics , Reverse Transcriptase Polymerase Chain Reaction , Tumor Suppressor Protein p53/genetics
13.
Oncogene ; 37(18): 2379-2393, 2018 05.
Article in English | MEDLINE | ID: mdl-29429991

ABSTRACT

Cellular senescence is a hallmark of normal aging and aging-related syndromes, including the premature aging disorder Hutchinson-Gilford Progeria Syndrome (HGPS), a rare genetic disorder caused by a single mutation in the LMNA gene that results in the constitutive expression of a truncated splicing mutant of lamin A known as progerin. Progerin accumulation leads to increased cellular stresses including unrepaired DNA damage, activation of the p53 signaling pathway and accelerated senescence. We previously established that the p53 isoforms ∆133p53 and p53ß regulate senescence in normal human cells. However, their role in premature aging is unknown. Here we report that p53 isoforms are expressed in primary fibroblasts derived from HGPS patients, are associated with their accelerated senescence and that their manipulation can restore the replication capacity of HGPS fibroblasts. We found that in near-senescent HGPS fibroblasts, which exhibit low levels of ∆133p53 and high levels of p53ß, restoration of Δ133p53 expression was sufficient to extend replicative lifespan and delay senescence, despite progerin levels and abnormal nuclear morphology remaining unchanged. Conversely, Δ133p53 depletion or p53ß overexpression accelerated the onset of senescence in otherwise proliferative HGPS fibroblasts. Our data indicate that Δ133p53 exerts its role by modulating full-length p53 (FLp53) signaling to extend the replicative lifespan and promotes the repair of spontaneous progerin-induced DNA double-strand breaks (DSBs). We showed that Δ133p53 dominant-negative inhibition of FLp53 occurs directly at the p21/CDKN1A and miR-34a promoters, two p53 senescence-associated genes. In addition, Δ133p53 expression increased the expression of DNA repair RAD51, likely through upregulation of E2F1, a transcription factor that activates RAD51, to promote repair of DSBs. In summary, our data indicate that Δ133p53 modulates p53 signaling to repress progerin-induced early onset of senescence in HGPS cells. Therefore, restoration of ∆133p53 expression may be a novel therapeutic strategy to treat aging-associated phenotypes of HGPS in vivo.


Subject(s)
Aging, Premature/genetics , Cellular Senescence/genetics , Fibroblasts/physiology , Tumor Suppressor Protein p53/physiology , Aging, Premature/pathology , Cells, Cultured , DNA Damage/genetics , Fibroblasts/pathology , Humans , Progeria/genetics , Progeria/pathology , Protein Isoforms/physiology , Time Factors , Tumor Suppressor Protein p53/genetics
15.
Cell Death Differ ; 24(6): 1017-1028, 2017 06.
Article in English | MEDLINE | ID: mdl-28362428

ABSTRACT

p53 functions to induce cellular senescence, which is incompatible with self-renewal of pluripotent stem cells such as induced pluripotent stem cells (iPSC) and embryonic stem cells (ESC). However, p53 also has essential roles in these cells through DNA damage repair for maintaining genomic integrity and high sensitivity to apoptosis for eliminating severely damaged cells. We hypothesized that Δ133p53, a physiological inhibitory p53 isoform, is involved in the balanced regulation of self-renewing capacity, DNA damage repair and apoptosis. We examined 12 lines of human iPSC and their original fibroblasts, as well as three ESC lines, for endogenous protein levels of Δ133p53 and full-length p53 (FL-p53), and mRNA levels of various p53 target genes. While FL-p53 levels in iPSC and ESC widely ranged from below to above those in the fibroblasts, all iPSC and ESC lines expressed elevated levels of Δ133p53. The p53-inducible genes that mediate cellular senescence (p21WAF1, miR-34a, PAI-1 and IGFBP7), but not those for apoptosis (BAX and PUMA) and DNA damage repair (p53R2), were downregulated in iPSC and ESC. Consistent with these endogenous expression profiles, overexpression of Δ133p53 in human fibroblasts preferentially repressed the p53-inducible senescence mediators and significantly enhanced their reprogramming to iPSC. The iPSC lines derived from Δ133p53-overexpressing fibroblasts formed well-differentiated, benign teratomas in immunodeficient mice and had fewer numbers of somatic mutations than an iPSC derived from p53-knocked-down fibroblasts, suggesting that Δ133p53 overexpression is non- or less oncogenic and mutagenic than total inhibition of p53 activities. Overexpressed Δ133p53 prevented FL-p53 from binding to the regulatory regions of p21WAF1 and miR-34a promoters, providing a mechanistic basis for its dominant-negative inhibition of a subset of p53 target genes. This study supports the hypothesis that upregulation of Δ133p53 is an endogenous mechanism that facilitates human somatic cells to become self-renewing pluripotent stem cells with maintained apoptotic and DNA repair activities.


Subject(s)
Cell Dedifferentiation , Fibroblasts/metabolism , Tumor Suppressor Protein p53/metabolism , Amino Acids , Animals , Cell Line , Cellular Senescence , Cyclin-Dependent Kinase Inhibitor p21/genetics , Fibroblasts/physiology , Gene Expression Regulation , Humans , Induced Pluripotent Stem Cells , Insulin-Like Growth Factor Binding Proteins/genetics , Mice , Mice, Inbred NOD , Mice, SCID , MicroRNAs/genetics , Plasminogen Activator Inhibitor 1/genetics , Protein Isoforms , Sequence Deletion , Tumor Suppressor Protein p53/genetics
16.
PLoS One ; 10(4): e0124899, 2015.
Article in English | MEDLINE | ID: mdl-25894979

ABSTRACT

The microRNA-34 family (miR-34a, -34b and -34c) have been reported to be tumor suppressor microRNAs (miRNAs) that are regulated by the TP53 and DNA hypermethylation. However, the expression, regulation, and prognostic value of the miR-34 family have not been systematically studied in colon cancer. To elucidate the roles of miR-34 family in colon carcinogenesis, miR-34a/b/c were measured in tumors and adjacent noncancerous tissues from 159 American and 113 Chinese colon cancer patients using quantitative RT-PCR, and we examined associations between miR-34a/b/c expression with TNM staging, cancer-specific mortality, TP53 mutation status and Affymetrix microarray data. All miR-34 family members were significantly increased in colon tumors, counter to the proposed tumor suppressor role for these miRNAs. Increased miR-34b/c were observed in more advanced tumors in two independent cohorts and increased expression of miR-34b/c was associated with poor cancer-specific mortality. While the expression of miR-34 family was not associated with TP53 mutation status, TP53 transcriptional activity was associated with miR-34a/b/c expression that is consistent with the proposed regulation of miR-34a/b/c by TP53. To examine where the miR-34 family is expressed, the expression of miR-34 family was compared between epitheliums and stromal tissues using laser microdissection technique. The expression of miR-34b/c was increased significantly in stromal tissues, especially in cancer stroma, compared with epithelial tissue. In conclusion, increased miR-34b/c predominantly expressed in stromal tissues is associated with poor prognosis in colon cancer. MiR-34 may contribute to cancer-stromal interaction associated with colon cancer progression.


Subject(s)
Colonic Neoplasms/diagnosis , Colonic Neoplasms/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Adult , Aged , Aged, 80 and over , Colonic Neoplasms/pathology , Female , Humans , Intestinal Mucosa/metabolism , Male , Middle Aged , Mutation , Prognosis , Stromal Cells/metabolism , Tumor Suppressor Protein p53/genetics , Up-Regulation
17.
Nat Commun ; 5: 4706, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-25144556

ABSTRACT

Δ133p53α, a p53 isoform that can inhibit full-length p53, is downregulated at replicative senescence in a manner independent of mRNA regulation and proteasome-mediated degradation. Here we demonstrate that, unlike full-length p53, Δ133p53α is degraded by autophagy during replicative senescence. Pharmacological inhibition of autophagy restores Δ133p53α expression levels in replicatively senescent fibroblasts, without affecting full-length p53. The siRNA-mediated knockdown of pro-autophagic proteins (ATG5, ATG7 and Beclin-1) also restores Δ133p53α expression. The chaperone-associated E3 ubiquitin ligase STUB1, which is known to regulate autophagy, interacts with Δ133p53α and is downregulated at replicative senescence. The siRNA knockdown of STUB1 in proliferating, early-passage fibroblasts induces the autophagic degradation of Δ133p53α and thereby induces senescence. Upon replicative senescence or STUB1 knockdown, Δ133p53α is recruited to autophagosomes, consistent with its autophagic degradation. This study reveals that STUB1 is an endogenous regulator of Δ133p53α degradation and senescence, and identifies a p53 isoform-specific protein turnover mechanism that orchestrates p53-mediated senescence.


Subject(s)
Autophagy/physiology , Cellular Senescence/physiology , Tumor Suppressor Protein p53/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Androstadienes/pharmacology , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Autophagy/drug effects , Beclin-1 , Cells, Cultured , Cycloheximide/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Knockdown Techniques , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Protein Isoforms/metabolism , RNA, Small Interfering , Sequestosome-1 Protein , Tumor Suppressor Protein p53/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Wortmannin
18.
J Clin Invest ; 123(12): 5247-57, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24231352

ABSTRACT

Cellular senescence contributes to aging and decline in tissue function. p53 isoform switching regulates replicative senescence in cultured fibroblasts and is associated with tumor progression. Here, we found that the endogenous p53 isoforms Δ133p53 and p53ß are physiological regulators of proliferation and senescence in human T lymphocytes in vivo. Peripheral blood CD8+ T lymphocytes collected from healthy donors displayed an age-dependent accumulation of senescent cells (CD28-CD57+) with decreased Δ133p53 and increased p53ß expression. Human lung tumor-associated CD8+ T lymphocytes also harbored senescent cells. Cultured CD8+ blood T lymphocytes underwent replicative senescence that was associated with loss of CD28 and Δ133p53 protein. In poorly proliferative, Δ133p53-low CD8+CD28- cells, reconstituted expression of either Δ133p53 or CD28 upregulated endogenous expression of each other, which restored cell proliferation, extended replicative lifespan and rescued senescence phenotypes. Conversely, Δ133p53 knockdown or p53ß overexpression in CD8+CD28+ cells inhibited cell proliferation and induced senescence. This study establishes a role for Δ133p53 and p53ß in regulation of cellular proliferation and senescence in vivo. Furthermore, Δ133p53-induced restoration of cellular replicative potential may lead to a new therapeutic paradigm for treating immunosenescence disorders, including those associated with aging, cancer, autoimmune diseases, and HIV infection.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , Cellular Senescence/physiology , Lung Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating/pathology , Protein Isoforms/physiology , Tumor Suppressor Protein p53/physiology , Adult , Aged , Autophagy , Cell Division , Cells, Cultured , Female , Gene Expression Regulation, Neoplastic , Humans , Leupeptins/pharmacology , Lung Neoplasms/immunology , Macrolides/pharmacology , Male , Middle Aged , Neoplasm Proteins/physiology , Proteolysis , Recombinant Proteins/metabolism , Transduction, Genetic , Tumor Microenvironment , Young Adult
19.
PLoS One ; 7(9): e44156, 2012.
Article in English | MEDLINE | ID: mdl-22970173

ABSTRACT

BACKGROUND: Cellular senescence can be a functional barrier to carcinogenesis. We hypothesized that inflammation modulates carcinogenesis through senescence and DNA damage response (DDR). We examined the association between senescence and DDR with macrophage levels in inflammatory bowel disease (IBD). In vitro experiments tested the ability of macrophages to induce senescence in primary cells. Inflammation modulating microRNAs were identified in senescence colon tissue for further investigation. METHODOLOGY/PRINCIPAL FINDINGS: Quantitative immunohistochemistry identified protein expression by colon cell type. Increased cellular senescence (HP1γ; P = 0.01) or DDR (γH2A.X; P = 0.031, phospho-Chk2, P = 0.014) was associated with high macrophage infiltration in UC. Co-culture with macrophages (ANA-1) induced senescence in >80% of primary cells (fibroblasts MRC5, WI38), illustrating that macrophages induce senescence. Interestingly, macrophage-induced senescence was partly dependent on nitric oxide synthase, and clinically relevant NO• levels alone induced senescence. NO• induced DDR in vitro, as detected by immunofluorescence. In contrast to UC, we noted in Crohn's disease (CD) that senescence (HP1γ; P<0.001) and DDR (γH2A.X; P<0.05, phospho-Chk2; P<0.001) were higher, and macrophages were not associated with senescence. We hypothesize that nitric oxide may modulate senescence in CD; epithelial cells of CD had higher levels of NOS2 expression than in UC (P = 0.001). Microarrays and quantitative-PCR identified miR-21 expression associated with macrophage infiltration and NOS2 expression. CONCLUSIONS: Senescence was observed in IBD with senescence-associated ß-galactosidase and HP1γ. Macrophages were associated with senescence and DDR in UC, and in vitro experiments with primary human cells showed that macrophages induce senescence, partly through NO•, and that NO• can induce DDR associated with senescence. Future experiments will investigate the role of NO• and miR-21 in senescence. This is the first study to implicate macrophages and nitrosative stress in a direct effect on senescence and DDR, which is relevant to many diseases of inflammation, cancer, and aging.


Subject(s)
Cellular Senescence/genetics , DNA Damage/genetics , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology , Macrophages/metabolism , MicroRNAs/metabolism , Nitric Oxide/metabolism , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Cells, Cultured , Checkpoint Kinase 2 , Chromosomal Proteins, Non-Histone/metabolism , Colitis, Ulcerative/enzymology , Colitis, Ulcerative/genetics , Colitis, Ulcerative/pathology , Colon/enzymology , Colon/pathology , Crohn Disease/enzymology , Crohn Disease/genetics , Crohn Disease/pathology , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Histones/metabolism , Humans , Inflammatory Bowel Diseases/enzymology , Mice , MicroRNAs/genetics , Nitric Oxide Synthase Type II/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/genetics , Up-Regulation/genetics
20.
Aging (Albany NY) ; 3(1): 26-32, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21266744

ABSTRACT

p53 takes critical part in a number of positive and negative feedback loops to regulate carcinogenesis, aging and other biological processes. Uncapped or dysfunctional telomeres are an endogenous DNA damage that activates ATM kinase (ataxia telangiectasia mutated) and then p53 to induce cellular senescence or apoptosis. Our recent study shows that p53, a downstream effector of the telomere damage signaling, also functions upstream of the telomere­capping protein complex by inhibiting one of its components, TRF2 (telomeric repeat binding factor 2). Since TRF2 inhibition leads to ATM activation, a novel positive feedback loop exists to amplify uncapped telomere­induced, p53­mediated cellular responses. Siah1 (seven in absentia homolog 1), a p53­inducible E3 ubiquitin ligase, plays a key role in this feedback regulation by targeting TRF2 for ubiquitination and proteasomal degradation. Biological significance and therapeutic implications of this study are discussed.


Subject(s)
Telomeric Repeat Binding Protein 2/metabolism , Tumor Suppressor Protein p53/metabolism , Ataxia Telangiectasia Mutated Proteins , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA Damage , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Feedback, Physiological , Humans , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Telomerase/metabolism , Telomere/genetics , Telomere/metabolism , Telomeric Repeat Binding Protein 2/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...