Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
PeerJ ; 12: e17242, 2024.
Article in English | MEDLINE | ID: mdl-38699180

ABSTRACT

Kiekie Polotow & Brescovit, 2018 is a Neotropical genus of Ctenidae, with most of its species occuring in Central America. In this study, we review the systematics of Kiekie and describe five new species and the unknown females of K. barrocolorado Polotow & Brescovit, 2018 and K. garifuna Polotow & Brescovit, 2018, and the unknown male of K. verbena Polotow & Brescovit, 2018. In addition, we described the female of K. montanense which was wrongly assigned as K. griswoldi Polotow & Brescovit, 2018 (both species are sympatric). We provided a modified diagnosis for previously described species based on the morphology of the newly discovered species and in situ photographs of living specimens. We inferred a molecular phylogeny using four nuclear (histone H3, 28S rRNA, 18S rRNA and ITS-2) and three mitochondrial genes (cytochrome c oxidase subunit I or COI, 12S rRNA and 16S rRNA) to test the monophyly of the genus and the evolutionary relationships of its species. Lastly, we reconstruct the historical biogeography and map diversity and endemism distributional patterns of the different species. This study increased the number of known species of Kiekie from 13 to 18, and we describe a new genus, Eldivo which is sister lineage of Kiekie. Most of the diversity and endemism of the genus Kiekie is located in the montane ecosystems of Costa Rica followed by the lowland rainforest of the Pacific side (Limon Basin). Kiekie originated in the North America Tropical region, this genus started diversifying in the Late Miocene and spread to Lower Central America and South America. In that region, Kiekie colonized independently several times the montane ecosystems corresponding to periods of uplifting of Talamanca and Central Cordilleras.


Subject(s)
Phylogeny , Spiders , Animals , Spiders/classification , Spiders/genetics , Central America , Female , Male , Animal Distribution , Phylogeography
2.
Cladistics ; 39(6): 479-532, 2023 12.
Article in English | MEDLINE | ID: mdl-37787157

ABSTRACT

In the last decade and a half, advances in genetic sequencing technologies have revolutionized systematics, transforming the field from studying morphological characters or a few genetic markers, to genomic datasets in the phylogenomic era. A plethora of molecular phylogenetic studies on many taxonomic groups have come about, converging on, or refuting prevailing morphology or legacy-marker-based hypotheses about evolutionary affinities. Spider systematics has been no exception to this transformation and the inter-relationships of several groups have now been studied using genomic data. About 51 500 extant spider species have been described, all with a conservative body plan, but innumerable morphological and behavioural peculiarities. Inferring the spider tree of life using morphological data has been a challenging task. Molecular data have corroborated many hypotheses of higher-level relationships, but also resulted in new groups that refute previous hypotheses. In this review, we discuss recent advances in the reconstruction of the spider tree of life and highlight areas where additional effort is needed with potential solutions. We base this review on the most comprehensive spider phylogeny to date, representing 131 of the 132 spider families. To achieve this sampling, we combined six Sanger-based markers with newly generated and publicly available genome-scale datasets. We find that some inferred relationships between major lineages of spiders (such as Austrochiloidea, Palpimanoidea and Synspermiata) are robust across different classes of data. However, several new hypotheses have emerged with different classes of molecular data. We identify and discuss the robust and controversial hypotheses and compile this blueprint to design future studies targeting systematic revisions of these problematic groups. We offer an evolutionary framework to explore comparative questions such as evolution of venoms, silk, webs, morphological traits and reproductive strategies.


Subject(s)
Spiders , Humans , Animals , Spiders/genetics , Phylogeny , Genomics , Sequence Analysis, DNA , Genome
3.
Zootaxa ; 5277(3): 553-564, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37518304

ABSTRACT

Two new species of the genus Putaoa Hormiga and Tu, 2008 from southern China are described, Putaoa annulata n. sp. (♂♀) and Putaoa titanoverpa n. sp. (♂♀), for a total number of five described species in this genus. Detailed descriptions and illustrations of the two new species are provided. A map of collecting localities is also provided for all five Putaoa species.


Subject(s)
Spiders , Animals , China
4.
Mol Phylogenet Evol ; 186: 107855, 2023 09.
Article in English | MEDLINE | ID: mdl-37311493

ABSTRACT

The miniature orb weaving spiders (symphytognathoids) are a group of small spiders (<2 mm), including the smallest adult spider Patu digua (0.37 mm in body length), that have been classified into five families. The species of one of its constituent lineages, the family Anapidae, build a remarkable diversity of webs (ranging from orbs to sheet webs and irregular tangles) and even include a webless kleptoparasitic species. Anapids are also exceptional because of the extraordinary diversity of their respiratory systems. The phylogenetic relationships of symphytognathoid families have been recalcitrant with different classes of data, such as, monophyletic with morphology and its concatenation with Sanger-based six markers, paraphyletic (including a paraphyletic Anapidae) with solely Sanger-based six markers, and polyphyletic with transcriptomes. In this study, we capitalized on a large taxonomic sampling of symphytognathoids, focusing on Anapidae, and using de novo sequenced ultraconserved elements (UCEs) combined with UCEs recovered from available transcriptomes and genomes. We evaluated the conflicting relationships using a variety of support metrics and topology tests. We found support for the phylogenetic hypothesis proposed using morphology to obtain the "symphytognathoids'' clade, Anterior Tracheal System (ANTS) Clade and monophyly of the family Anapidae. Anapidae can be divided into three major lineages, the Vichitra Clade (including Teutoniella, Holarchaea, Sofanapis and Acrobleps), the subfamily Micropholcommatinae and the Orb-weaving anapids (Owa) Clade. Biogeographic analyses reconstructed a hypothesis of multiple long-distance transoceanic dispersal events, potentially influenced by the Antarctic Circumpolar Current and West Wind Drift. In symphytognathoids, the ancestral anterior tracheal system transformed to book lungs four times and reduced book lungs five times. The posterior tracheal system was lost six times. The orb web structure was lost four times independently and transformed into sheet web once.


Subject(s)
Spiders , Animals , Phylogeny , Genome , Transcriptome , Respiratory System
5.
Cladistics ; 39(1): 18-42, 2023 02.
Article in English | MEDLINE | ID: mdl-36200603

ABSTRACT

Tropical wandering spiders (Ctenidae) are a diverse group of cursorial predators with its greatest species richness in the tropics. Traditionally, Ctenidae are diagnosed based on the presence of eight eyes arranged in three rows (a 2-4-2 pattern). We present a molecular phylogeny of Ctenidae, including for the first time representatives of all of its subfamilies. The molecular phylogeny was inferred using five nuclear (histone H3, 28S, 18S, Actin and ITS-2) and four mitochondrial (NADH, COI, 12S and 16S) markers. The final matrix includes 259 terminals, 103 of which belong to Ctenidae and represent 28 of the current 49 described genera. We estimated divergence times by including fossils as calibration points and biogeographic events, and used the phylogenetic hypothesis obtained to reconstruct the evolution of the eye conformation in the retrolateral tibial apophysis (RTA) clade. Ctenidae and its main lineages originated during the Paleocene-Eocene and have diversified in the tropics since then. However, in some analyses Ctenidae was recovered as polyphyletic as the genus Ancylometes Bertkau, 1880 was placed as sister to Oxyopidae. Except for Acantheinae, in which the type genus Acantheis Thorell, 1891 is placed inside Cteninae, the four recognized subfamilies of Ctenidae are monophyletic in most analyses. The ancestral reconstruction of the ocular conformation in the retrolateral tibial apophysis clade suggests that the ocular pattern of Ctenidae has evolved convergently seven times and that it has originated from ocular conformations of two rows of four eyes (4-4) and the ocular pattern of lycosids (4-2-2). We also synonymize the monotypic genus Parabatinga Polotov & Brescovit, 2009 with Centroctenus Mello-Leitão, 1929. We discuss some of the putative morphological synapomorphies of the main ctenid lineages within the phylogenetic framework offered by the molecular phylogenetic results of the study.


Subject(s)
Spiders , Animals , Phylogeny , Spiders/anatomy & histology , Histones/genetics , Fossils
6.
Gene ; 850: 146925, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36191823

ABSTRACT

Spiders (Araneae) are the most abundant terrestrial predators and megadiverse on earth. In recent years, the mitochondrial genome of a great diversity of species has been sequenced, mainly for ecological and commercial purposes. These studies have uncovered the existence of a variety of mitochondrial genome rearrangements. However, there is poor genetic information in several taxonomic families of spiders. We have sequenced the complete genome of Phoneutria depilata (Ctenidae) and, based on this, extract the mitogenomes of other ctenid species from published transcriptomes to perform a comparative study among spider species to determine the relationship between the level of mitochondrial rearrangements and its possible relationship with molecular variability in spiders. Complete mitochondrial genomes of eighteen spiders (including eight Ctenidae species) were obtained by two different methodologies (sequencing and transcriptome extraction). Fifty-eight spider mitochondrial genomes were downloaded from the NCBI database for gene order analysis. After verifying the annotation of each mitochondrial gene, a phylogenetic and a gene order analysis from 76 spider mitochondrial genomes were carried out. Our results show a high rate of annotation error in the published spider mitochondrial genomes, which could lead to errors in phylogenetic inference. Moreover, to provide new mitochondrial genomes in spiders by two different methodologies to obtain them, our analysis identifies six different mitochondrial architectures among all spiders. Translocation or tandem duplication random loss (TDRL) events in tRNA genes were identified to explain the evolution of the spider mitochondrial genome. In addition, our findings provide new insights into spider mitochondrial evolution.


Subject(s)
Genome, Mitochondrial , Spiders , Animals , Spiders/genetics , Phylogeny , Genes, Mitochondrial , RNA, Transfer/genetics
9.
Syst Biol ; 71(6): 1487-1503, 2022 10 12.
Article in English | MEDLINE | ID: mdl-35289903

ABSTRACT

A prominent question in animal research is how the evolution of morphology and ecology interacts in the generation of phenotypic diversity. Spiders are some of the most abundant arthropod predators in terrestrial ecosystems and exhibit a diversity of foraging styles. It remains unclear how spider body size and proportions relate to foraging style, and if the use of webs as prey capture devices correlates with changes in body characteristics. Here, we present the most extensive data set to date of morphometric and ecological traits in spiders. We used this data set to estimate the change in spider body sizes and shapes over deep time and to test if and how spider phenotypes are correlated with their behavioral ecology. We found that phylogenetic variation of most traits best fitted an Ornstein-Uhlenbeck model, which is a model of stabilizing selection. A prominent exception was body length, whose evolutionary dynamics were best explained with a Brownian Motion (free trait diffusion) model. This was most expressed in the araneoid clade (ecribellate orb-weaving spiders and allies) that showed bimodal trends toward either miniaturization or gigantism. Only few traits differed significantly between ecological guilds, most prominently leg length and thickness, and although a multivariate framework found general differences in traits among ecological guilds, it was not possible to unequivocally associate a set of morphometric traits with the relative ecological mode. Long, thin legs have often evolved with aerial webs and a hanging (suspended) locomotion style, but this trend is not general. Eye size and fang length did not differ between ecological guilds, rejecting the hypothesis that webs reduce the need for visual cue recognition and prey immobilization. For the inference of the ecology of species with unknown behaviors, we propose not to use morphometric traits, but rather consult (micro-)morphological characters, such as the presence of certain podal structures. These results suggest that, in contrast to insects, the evolution of body proportions in spiders is unusually stabilized and ecological adaptations are dominantly realized by behavioral traits and extended phenotypes in this group of predators. This work demonstrates the power of combining recent advances in phylogenomics with trait-based approaches to better understand global functional diversity patterns through space and time. [Animal architecture; Arachnida; Araneae; extended phenotype; functional traits; macroevolution; stabilizing selection.].


Subject(s)
Arachnida , Spiders , Animals , Arachnida/genetics , Biological Evolution , Ecosystem , Phylogeny
10.
Mol Biol Evol ; 39(2)2022 02 03.
Article in English | MEDLINE | ID: mdl-35137183

ABSTRACT

Deciphering the evolutionary relationships of Chelicerata (arachnids, horseshoe crabs, and allied taxa) has proven notoriously difficult, due to their ancient rapid radiation and the incidence of elevated evolutionary rates in several lineages. Although conflicting hypotheses prevail in morphological and molecular data sets alike, the monophyly of Arachnida is nearly universally accepted, despite historical lack of support in molecular data sets. Some phylotranscriptomic analyses have recovered arachnid monophyly, but these did not sample all living orders, whereas analyses including all orders have failed to recover Arachnida. To understand this conflict, we assembled a data set of 506 high-quality genomes and transcriptomes, sampling all living orders of Chelicerata with high occupancy and rigorous approaches to orthology inference. Our analyses consistently recovered the nested placement of horseshoe crabs within a paraphyletic Arachnida. This result was insensitive to variation in evolutionary rates of genes, complexity of the substitution models, and alternative algorithmic approaches to species tree inference. Investigation of sources of systematic bias showed that genes and sites that recover arachnid monophyly are enriched in noise and exhibit low information content. To test the impact of morphological data, we generated a 514-taxon morphological data matrix of extant and fossil Chelicerata, analyzed in tandem with the molecular matrix. Combined analyses recovered the clade Merostomata (the marine orders Xiphosura, Eurypterida, and Chasmataspidida), but merostomates appeared nested within Arachnida. Our results suggest that morphological convergence resulting from adaptations to life in terrestrial habitats has driven the historical perception of arachnid monophyly, paralleling the history of numerous other invertebrate terrestrial groups.


Subject(s)
Arachnida , Animals , Arachnida/genetics , Biological Evolution , Fossils , Genome , Phylogeny
11.
Zootaxa ; 5020(1): 1-30, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34810422

ABSTRACT

Five new species of mimetid spiders from China are described: Mimetus subulatus n. sp., M. clavatus n. sp., M. dentatus n. sp., M. niveosignatus n. sp. and M. uncatus n. sp. The phylogenetic placement of these new species is inferred based on a cladistic analysis of an expanded version of the morphological dataset of Benavides and Hormiga (2020). The new species form a clade that can be distinguished from other Mimetus species by the presence of a subtegular apophysis between paracymbium and subtegulum, pilose cuticular projections on the membranous part of the conductor in the male palp and by a bicameral structure of the spermathecae in females. The new species are part of a clade that includes Mimetus syllepsicus Hentz, 1832, the type species of the genus. The genus Mimetus as currently circumscribed is not monophyletic, as the clade that includes all the Mimetus species also includes the genera Australomimetus Heimer, 1986 and Anansi Benavides and Hormiga, 2017, corroborating the results of Benavides and Hormiga (2020).


Subject(s)
Spiders , Animal Distribution , Animals , China , Female , Male , Phylogeny , Spiders/genetics
12.
Zootaxa ; 5026(1): 71-101, 2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34810940

ABSTRACT

We address the phylogenetic relationships of pimoid spiders (Pimoidae) using a standard target-gene approach with an extensive taxonomic sample, which includes representatives of the four currently recognized pimoid genera, 26 linyphiid genera, a sample of Physoglenidae, Cyatholipidae and one Tetragnathidae species. We test the monophyly of Pimoidae and Linyphiidae and explore the biogeographic history of the group. Nanoa Hormiga, Buckle and Scharff, 2005 and Pimoa Chamberlin Ivie, 1943 form a clade which is the sister group of a lineage that includes all Linyphiidae, Weintrauboa Hormiga, 2003 and Putaoa Hormiga and Tu, 2008. Weintrauboa, Putaoa, Pecado and Stemonyphantes form a clade (Stemonyphantinae) sister to all remaining linyphiids. We use the resulting optimal molecular phylogenetic tree to assess hypotheses on the male palp sclerite homologies of pimoids and linyphiids. Pimoidae is redelimited to only include Pimoa and Nanoa. We formalize the transfer from Pimoidae of the genera Weintrauboa and Putaoa to Linyphiidae, re-circumscribe the linyphiid subfamily Stemonyphantinae, and offer revised morphological diagnoses for Pimoidae and Linyphiidae.


Subject(s)
Spiders , Animals , Male , Phylogeny , Spiders/genetics
13.
Cladistics ; 37(3): 317-342, 2021 06.
Article in English | MEDLINE | ID: mdl-34478200

ABSTRACT

We report on the colonization and diversification of linyphiid spiders in the Pacific oceanic archipelago of Juan Fernandez. About 50 spider species occur naturally in these islands, most of them endemic and about half of them are linyphiids. Linyphiidae includes no fewer than 15 species of Laminacauda and three of Neomaso (with several additional undescribed species in the latter genus), all of them single island endemics. There are three additional linyphiid endemic genera, two monotypic and one, Juanfernandezia, with two species. Unlike the rather uniform somatic morphology and small ground sheet webs of the continental Laminacauda and Neomaso species, the Juan Fernandez endemics exhibit morphological features and life history traits that are very rare or unknown in any other linyphiids. A multi-locus phylogenetic analysis confirms at least five independent Juan Fernandez colonizations of Linyphiidae, two within the same genus, and three of which underwent subsequent local diversification. Different calibrations suggest alternative colonization timelines, some at odds with island ages, but all agree on similar diversification timings of the endemic lineages. Rare phenotypic traits (e.g. gigantism, massive chelicerae or elongated legs) evolved multiple times independently within the islands. Based on the remarkable levels of eco-phenotypic differentiation in locally diversified species showing densely packed distributions, we propose that Laminacauda, and probably Neomaso, constitute a case of adaptive radiation.


Subject(s)
Adaptation, Physiological , Biodiversity , Biological Evolution , Phenotype , Phylogeny , Spiders/physiology , Animals , Geography , Pacific Ocean , Spiders/anatomy & histology , Spiders/radiation effects
14.
Cladistics ; 37(3): 298-316, 2021 06.
Article in English | MEDLINE | ID: mdl-34478199

ABSTRACT

High throughput sequencing and phylogenomic analyses focusing on relationships among spiders have both reinforced and upturned long-standing hypotheses. Likewise, the evolution of spider webs-perhaps their most emblematic attribute-is being understood in new ways. With a matrix including 272 spider species and close arachnid relatives, we analyze and evaluate the relationships among these lineages using a variety of orthology assessment methods, occupancy thresholds, tree inference methods and support metrics. Our analyses include families not previously sampled in transcriptomic analyses, such as Symphytognathidae, the only araneoid family absent in such prior works. We find support for the major established spider lineages, including Mygalomorphae, Araneomorphae, Synspermiata, Palpimanoidea, Araneoidea and the Retrolateral Tibial Apophysis Clade, as well as the uloborids, deinopids, oecobiids and hersiliids Grade. Resulting trees are evaluated using bootstrapping, Shimodaira-Hasegawa approximate likelihood ratio test, local posterior probabilities and concordance factors. Using structured Markov models to assess the evolution of spider webs while accounting for hierarchically nested traits, we find multiple convergent occurrences of the orb web across the spider tree-of-life. Overall, we provide the most comprehensive spider tree-of-life to date using transcriptomic data and use new methods to explore controversial issues of web evolution, including the origins and multiple losses of the orb web.


Subject(s)
Biological Evolution , Insect Proteins/genetics , Phylogeny , Predatory Behavior/physiology , Spiders/classification , Transcriptome , Animals , Spiders/genetics , Spiders/physiology
15.
Zootaxa ; 4979(1): 131146, 2021 May 28.
Article in English | MEDLINE | ID: mdl-34187009

ABSTRACT

Zootaxa published more than a thousand papers on Araneae from 2002 to the present, including descriptions of 3,833 new spider species and 177 new genera. Here we summarise the key contributions of Zootaxa to our current knowledge of global spider diversity. We provide a historical account of the researchers that have actively participated as editors, and recognize the more than 1,000 reviewers without whom none of this would have been possible. We conduct a simple analysis of the contributions by authors and geographic region, which allows us to uncover some of the underlying trends in current spider taxonomy. In addition, we examine some of the milestones in twenty years of spider systematic research in Zootaxa. Finally, we discuss future prospects of spider taxonomy and the role that Zootaxa and its younger sister journal Megataxa will play in it. We would like to dedicate this contribution to the memory of Norman I. Platnick, a crucial figure in the advancement of spider systematics.


Subject(s)
Spiders/classification , Animals , Biodiversity , Periodicals as Topic
17.
Zookeys ; 1022: 13-50, 2021.
Article in English | MEDLINE | ID: mdl-33762866

ABSTRACT

The species of the genus Phoneutria (Ctenidae), also called banana spiders, are considered amongst the most venomous spiders in the world. In this study we revalidate P. depilata (Strand, 1909), which had been synonymized with P. boliviensisis (F.O. Pickard-Cambridge, 1897), using morphological and nucleotide sequence data (COI and ITS-2) together with species delimitation methods. We synonymized Ctenus peregrinoides, Strand, 1910 and Phoneutria colombiana Schmidt, 1956 with P. depilata. Furthermore, we designated Ctenus signativenter Strand, 1910 as a nomen dubium because the exact identity of this species cannot be ascertained with immature specimens, but we note that the type locality suggests that the C. signativenter syntypes belong to P. depilata. We also provide species distribution models for both species of Phoneutria and test hypotheses of niche conservatism under an allopatric speciation model. Our phylogenetic analyses support the monophyly of the genus Phoneutria and recover P. boliviensis and P. depilata as sister species, although with low nodal support. In addition, the tree-based species delimitation methods also supported the separate identities of these two species. Phoneutria boliviensis and P. depilata present allopatric distributions separated by the Andean mountain system. Species distribution models indicate lowland tropical rain forest ecosystems as the most suitable habitat for these two Phoneutria species. In addition, we demonstrate the value of citizen science platforms like iNaturalist in improving species distribution knowledge based on occurrence records. Phoneutria depilata and P. boliviensis present niche conservatism following the expected neutral model of allopatric speciation. The compiled occurrence records and distribution maps for these two species, together with the morphological diagnosis of both species, will help to identify risk areas of accidental bites and assist health professionals to determine the identity of the species involved in bites, especially for P. depilata.

18.
Annu Rev Entomol ; 66: 225-241, 2021 01 07.
Article in English | MEDLINE | ID: mdl-32822555

ABSTRACT

Spiders (Araneae) make up a remarkably diverse lineage of predators that have successfully colonized most terrestrial ecosystems. All spiders produce silk, and many species use it to build capture webs with an extraordinary diversity of forms. Spider diversity is distributed in a highly uneven fashion across lineages. This strong imbalance in species richness has led to several causal hypotheses, such as codiversification with insects, key innovations in silk structure and web architecture, and loss of foraging webs. Recent advances in spider phylogenetics have allowed testing of some of these hypotheses, but results are often contradictory, highlighting the need to consider additional drivers of spider diversification. The spatial and historical patterns of diversity and diversification remain contentious. Comparative analyses of spider diversification will advance only if we continue to make progress with studies of species diversity, distribution, and phenotypic traits, together with finer-scale phylogenies and genomic data.


Subject(s)
Genetic Speciation , Spiders/genetics , Animals , Food Chain , Fossils , Insecta , Phenotype , Phylogeny , Sexual Selection , Spiders/anatomy & histology
19.
Mol Biol Evol ; 38(3): 891-903, 2021 03 09.
Article in English | MEDLINE | ID: mdl-32986823

ABSTRACT

Genome-scale data sets are converging on robust, stable phylogenetic hypotheses for many lineages; however, some nodes have shown disagreement across classes of data. We use spiders (Araneae) as a system to identify the causes of incongruence in phylogenetic signal between three classes of data: exons (as in phylotranscriptomics), noncoding regions (included in ultraconserved elements [UCE] analyses), and a combination of both (as in UCE analyses). Gene orthologs, coded as amino acids and nucleotides (with and without third codon positions), were generated by querying published transcriptomes for UCEs, recovering 1,931 UCE loci (codingUCEs). We expected that congeners represented in the codingUCE and UCEs data would form clades in the presence of phylogenetic signal. Noncoding regions derived from UCE sequences were recovered to test the stability of relationships. Phylogenetic relationships resulting from all analyses were largely congruent. All nucleotide data sets from transcriptomes, UCEs, or a combination of both recovered similar topologies in contrast with results from transcriptomes analyzed as amino acids. Most relationships inferred from low-occupancy data sets, containing several hundreds of loci, were congruent across Araneae, as opposed to high occupancy data matrices with fewer loci, which showed more variation. Furthermore, we found that low-occupancy data sets analyzed as nucleotides (as is typical of UCE data sets) can result in more congruent relationships than high occupancy data sets analyzed as amino acids (as in phylotranscriptomics). Thus, omitting data, through amino acid translation or via retention of only high occupancy loci, may have a deleterious effect in phylogenetic reconstruction.


Subject(s)
Phylogeny , Spiders/genetics , Amino Acid Sequence , Animals , Base Sequence
20.
Syst Biol ; 69(2): 401-411, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31165170

ABSTRACT

We address some of the taxonomic and classification changes proposed by Kuntner et al. (2019) in a comparative study on the evolution of sexual size dimorphism in nephiline spiders. Their proposal to recircumscribe araneids and to rank the subfamily Nephilinae as a family is fundamentally flawed as it renders the family Araneidae paraphyletic. We discuss the importance of monophyly, outgroup selection, and taxon sampling, the subjectivity of ranks, and the implications of the age of origin criterion to assign categorical ranks in biological classifications. We explore the outcome of applying the approach of Kuntner et al. (2019) to the classification of spiders with emphasis on the ecribellate orb-weavers (Araneoidea) using a recently published dated phylogeny. We discuss the implications of including the putative sister group of Nephilinae (the sexually dimorphic genus Paraplectanoides) and the putative sister group of Araneidae (the miniature, monomorphic family Theridiosomatidae). We propose continuation of the phylogenetic classification put forth by Dimitrov et al. (2017), and we formally rank Nephilinae and Phonognathinae as subfamilies of Araneidae. Our classification better reflects the understanding of the phylogenetic placement and evolutionary history of nephilines and phonognathines while maintaining the diagnosability of Nephilinae. It also fulfills the fundamental requirement that taxa must be monophyletic, and thus avoids the paraphyly of Araneidae implied by Kuntner et al. (2019).


Subject(s)
Phylogeny , Spiders/classification , Animals , Body Size , Classification , Sex Characteristics , Spiders/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL