Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 42(11): 113330, 2023 11 28.
Article in English | MEDLINE | ID: mdl-38007690

ABSTRACT

IGHV3-33-encoded antibodies are prevalent in the human humoral response against the Plasmodium falciparum circumsporozoite protein (PfCSP). Among VH3-33 antibodies, cross-reactivity between PfCSP major repeat (NANP), minor (NVDP), and junctional (NPDP) motifs is associated with high affinity and potent parasite inhibition. However, the molecular basis of antibody cross-reactivity and the relationship with efficacy remain unresolved. Here, we perform an extensive structure-function characterization of 12 VH3-33 anti-PfCSP monoclonal antibodies (mAbs) with varying degrees of cross-reactivity induced by immunization of mice expressing a human immunoglobulin gene repertoire. We identify residues in the antibody paratope that mediate cross-reactive binding and delineate four distinct epitope conformations induced by antibody binding, with one consistently associated with high protective efficacy and another that confers comparably potent inhibition of parasite liver invasion. Our data show a link between molecular features of cross-reactive VH3-33 mAb binding to PfCSP and mAb potency, relevant for the development of antibody-based interventions against malaria.


Subject(s)
Malaria, Falciparum , Malaria , Mice , Humans , Animals , Plasmodium falciparum/genetics , Antibodies, Protozoan , Protozoan Proteins/genetics , Epitopes , Antibodies, Monoclonal , Malaria, Falciparum/parasitology
2.
Gates Open Res ; 7: 107, 2023.
Article in English | MEDLINE | ID: mdl-38009106

ABSTRACT

Label-free techniques including Surface Plasmon Resonance (SPR) and Biolayer Interferometry (BLI) are biophysical tools widely used to collect binding kinetics data of bimolecular interactions. To efficiently analyze SPR and BLI binding kinetics data, we have built a new high throughput analysis tool named the TitrationAnalysis. It can be used as a package in the Mathematica scripting environment and ultilize the non-linear curve-fitting module of Mathematica for its core function. This tool can fit the binding time course data and estimate association and dissociation rate constants ( k a and k d respectively) for determining apparent dissociation constant ( K D) values. The high throughput fitting process is automatic, requires minimal knowledge on Mathematica scripting and can be applied to data from multiple label-free platforms. We demonstrate that the TitrationAnalysis is optimal to analyze antibody-antigen binding data acquired on Biacore T200 (SPR), Carterra LSA (SPR imaging) and ForteBio Octet Red384 (BLI) platforms. The k a, k d and K D values derived using TitrationAnalysis very closely matched the results from the commercial analysis software provided specifically for these instruments. Additionally, the TitrationAnalysis tool generates user-directed customizable results output that can be readily used in downstream Data Quality Control associated with Good Clinical Laboratory Practice operations. With the versatility in source of data input source and options of analysis result output, the TitrationAnalysis high throughput analysis tool offers investigators a powerful alternative in biomolecular interaction characterization.

3.
J Virol ; 97(12): e0107023, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38019013

ABSTRACT

IMPORTANCE: Multiple SARS-CoV-2 variants of concern have emerged and caused a significant number of infections and deaths worldwide. These variants of concern contain mutations that might significantly affect antigen-targeting by antibodies. It is therefore important to further understand how antibody binding and neutralization are affected by the mutations in SARS-CoV-2 variants. We highlighted how antibody epitope specificity can influence antibody binding to SARS-CoV-2 spike protein variants and neutralization of SARS-CoV-2 variants. We showed that weakened spike binding and neutralization of Beta (B.1.351) and Omicron (BA.1) variants compared to wildtype are not universal among the panel of antibodies and identified antibodies of a specific binding footprint exhibiting consistent enhancement of spike binding and retained neutralization to Beta variant. These data and analysis can inform how antigen-targeting by antibodies might evolve during a pandemic and prepare for potential future sarbecovirus outbreaks.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , COVID-19 , SARS-CoV-2/genetics , Severe acute respiratory syndrome-related coronavirus , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
4.
PLoS Pathog ; 18(11): e1010999, 2022 11.
Article in English | MEDLINE | ID: mdl-36441829

ABSTRACT

Antibodies targeting the human malaria parasite Plasmodium falciparum circumsporozoite protein (PfCSP) can prevent infection and disease. PfCSP contains multiple central repeating NANP motifs; some of the most potent anti-infective antibodies against malaria bind to these repeats. Multiple antibodies can bind the repeating epitopes concurrently by engaging into homotypic Fab-Fab interactions, which results in the ordering of the otherwise largely disordered central repeat into a spiral. Here, we characterize IGHV3-33/IGKV1-5-encoded monoclonal antibody (mAb) 850 elicited by immunization of transgenic mice with human immunoglobulin loci. mAb 850 binds repeating NANP motifs with picomolar affinity, potently inhibits Plasmodium falciparum (Pf) in vitro and, when passively administered in a mouse challenge model, reduces liver burden to a similar extent as some of the most potent anti-PfCSP mAbs yet described. Like other IGHV3-33/IGKV1-5-encoded anti-NANP antibodies, mAb 850 primarily utilizes its HCDR3 and germline-encoded aromatic residues to recognize its core NANP motif. Biophysical and cryo-electron microscopy analyses reveal that up to 19 copies of Fab 850 can bind the PfCSP repeat simultaneously, and extensive homotypic interactions are observed between densely-packed PfCSP-bound Fabs to indirectly improve affinity to the antigen. Together, our study expands on the molecular understanding of repeat-induced homotypic interactions in the B cell response against PfCSP for potently protective mAbs against Pf infection.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Humans , Mice , Animals , Plasmodium falciparum , Cryoelectron Microscopy , Malaria, Falciparum/parasitology , Protozoan Proteins , Malaria/parasitology , Mice, Transgenic , Antibodies, Monoclonal , Antibodies, Protozoan
5.
Front Immunol ; 13: 1001145, 2022.
Article in English | MEDLINE | ID: mdl-36248899

ABSTRACT

Human B cells encompass functionally diverse lineages and phenotypic states that contribute to protective as well as pathogenic responses. Epstein-Barr virus (EBV) provides a unique lens for studying heterogeneous B cell responses, given its adaptation to manipulate intrinsic cell programming. EBV promotes the activation, proliferation, and eventual outgrowth of host B cells as immortalized lymphoblastoid cell lines (LCLs) in vitro, which provide a foundational model of viral latency and lymphomagenesis. Although cellular responses and outcomes of infection can vary significantly within populations, investigations that capture genome-wide perspectives of this variation at single-cell resolution are in nascent stages. We have recently used single-cell approaches to identify EBV-mediated B cell heterogeneity in de novo infection and within LCLs, underscoring the dynamic and complex qualities of latent infection rather than a singular, static infection state. Here, we expand upon these findings with functional characterizations of EBV-induced dynamic phenotypes that mimic B cell immune responses. We found that distinct subpopulations isolated from LCLs could completely reconstitute the full phenotypic spectrum of their parental lines. In conjunction with conserved patterns of cell state diversity identified within scRNA-seq data, these data support a model in which EBV continuously drives recurrent B cell entry, progression through, and egress from the Germinal Center (GC) reaction. This "perpetual GC" also generates tangent cell fate trajectories including terminal plasmablast differentiation, which constitutes a replicative cul-de-sac for EBV from which lytic reactivation provides escape. Furthermore, we found that both established EBV latency and de novo infection support the development of cells with features of atypical memory B cells, which have been broadly associated with autoimmune disorders. Treatment of LCLs with TLR7 agonist or IL-21 was sufficient to generate an increased frequency of IgD-/CD27-/CD23-/CD38+/CD138+ plasmablasts. Separately, de novo EBV infection led to the development of CXCR3+/CD11c+/FCRL4+ B cells within days, providing evidence for possible T cell-independent origins of a recently described EBV-associated neuroinvasive CXCR3+ B cell subset in patients with multiple sclerosis. Collectively, this work reveals unexpected virus-driven complexity across infected cell populations and highlights potential roles of EBV in mediating or priming foundational aspects of virus-associated immune cell dysfunction in disease.


Subject(s)
B-Lymphocytes , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Autoimmunity , Germinal Center , Humans , Immunoglobulin D/genetics , Phenotype , Toll-Like Receptor 7/genetics
6.
Science ; 374(6566): 472-478, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34554826

ABSTRACT

Antibody-based therapeutics and vaccines are essential to combat COVID-19 morbidity and mortality after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple mutations in SARS-CoV-2 that could impair antibody defenses propagated in human-to-human transmission and spillover or spillback events between humans and animals. To develop prevention and therapeutic strategies, we formed an international consortium to map the epitope landscape on the SARS-CoV-2 spike protein, defining and structurally illustrating seven receptor binding domain (RBD)­directed antibody communities with distinct footprints and competition profiles. Pseudovirion-based neutralization assays reveal spike mutations, individually and clustered together in variants, that affect antibody function among the communities. Key classes of RBD-targeted antibodies maintain neutralization activity against these emerging SARS-CoV-2 variants. These results provide a framework for selecting antibody treatment cocktails and understanding how viral variants might affect antibody therapeutic efficacy.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Epitope Mapping , Immunodominant Epitopes/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Antigens, Viral/chemistry , Antigens, Viral/immunology , COVID-19/therapy , Humans , Immunodominant Epitopes/chemistry , Protein Binding , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry
7.
Sci Rep ; 9(1): 14623, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31602007

ABSTRACT

No human has returned to the moon since the end of the Apollo program 47 years ago, however, new missions are planned for an orbital outpost. Space radiation and the potential for cancer remain as important issues to the future of human space exploration. While improved shield technologies and protective biologicals are under development, little is known concerning the interaction between cancer cells and host immunity in microgravity. As a hallmark of cancer, tumor cells employ mechanisms of immune evasion to avoid elimination by protective CD4+ and CD8+ T cells. We showed that a murine lymphoma was able to produce a soluble factor that inhibited the function of dendritic cells in activating the CD4+ T cells. Culture of the lymphoma cells in simulated microgravity (SMG), and not Static conditions, restored the CD4+ T cell response and augmented CD8+ T cell-mediated destruction of the cancer cells in vitro and in vivo. Thus, SMG impaired the mechanism of tumor escape and rendered the cancer cells more susceptible to T cell-mediated elimination. The stress of microgravity may expose the most critical components of a tumor's escape mechanism for astronaut protection and the generation of new cancer therapeutics for patients on Earth.


Subject(s)
Cosmic Radiation/adverse effects , Lymphoma/therapy , Space Flight , Tumor Escape/immunology , Weightlessness Simulation , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Culture Techniques/methods , Cell Line, Tumor , Cell Proliferation , Coculture Techniques , Humans , Lymphoma/immunology , Lymphoma/pathology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL