Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 252
Filter
1.
Cancers (Basel) ; 16(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39001539

ABSTRACT

The rise of drug resistance in cancer cells presents a formidable challenge in modern oncology, necessitating the exploration of innovative therapeutic strategies. This review investigates the latest advancements in overcoming drug resistance mechanisms employed by cancer cells, focusing on emerging therapeutic modalities. The intricate molecular insights into drug resistance, including genetic mutations, efflux pumps, altered signaling pathways, and microenvironmental influences, are discussed. Furthermore, the promising avenues offered by targeted therapies, combination treatments, immunotherapies, and precision medicine approaches are highlighted. Specifically, the synergistic effects of combining traditional cytotoxic agents with molecularly targeted inhibitors to circumvent resistance pathways are examined. Additionally, the evolving landscape of immunotherapeutic interventions, including immune checkpoint inhibitors and adoptive cell therapies, is explored in terms of bolstering anti-tumor immune responses and overcoming immune evasion mechanisms. Moreover, the significance of biomarker-driven strategies for predicting and monitoring treatment responses is underscored, thereby optimizing therapeutic outcomes. For insights into the future direction of cancer treatment paradigms, the current review focused on prevailing drug resistance challenges and improving patient outcomes, through an integrative analysis of these emerging therapeutic strategies.

2.
J Clin Med ; 13(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39064229

ABSTRACT

The leading cause of cancer deaths worldwide is attributed to non-small cell lung cancer (NSCLC), necessitating a continual focus on improving the diagnosis and treatment of this disease. In this review, the latest breakthroughs and emerging trends in managing NSCLC are highlighted. Major advancements in diagnostic methods, including better imaging technologies and the utilization of molecular biomarkers, are discussed. These advancements have greatly enhanced early detection and personalized treatment plans. Significant improvements in patient outcomes have been achieved by new targeted therapies and immunotherapies, providing new hope for individuals with advanced NSCLC. This review discusses the persistent challenges in accessing advanced treatments and their associated costs despite recent progress. Promising research into new therapies, such as CAR-T cell therapy and oncolytic viruses, which could further revolutionize NSCLC treatment, is also highlighted. This review aims to inform and inspire continued efforts to improve outcomes for NSCLC patients globally, by offering a comprehensive overview of the current state of NSCLC treatment and future possibilities.

3.
Carcinogenesis ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39051454

ABSTRACT

RLIP acts as a transporter that responds to stress and provides protection, specifically against glutathione-electrophile conjugates and xenobiotic toxins. Its increased presence in malignant cells, especially in cancer, emphasizes its crucial anti-apoptotic function. This is achieved by selectively regulating the cellular levels of pro-apoptotic oxidized lipid byproducts. Suppressing the progression of tumors in human xenografts can be achieved by effectively inhibiting RLIP, a transporter in the mercapturic acid pathway, without involving chemotherapy. Utilizing ovarian cancer (OC) cell lines (MDAH2774, OVCAR4, and OVCAR8), we observed that agents targeting RLIP, such as RLIP antisense and RLIP antibodies, not only substantially impeded the viability of OC cells but also remarkably increased their sensitivity to carboplatin. To delve further into the cytotoxic synergy between RLIP antisense, RLIP antibodies, and carboplatin, we conducted investigations in both cell culture and xenografts of OC cells. The outcomes revealed that RLIP depletion via phosphorothioate antisense led to rapid and sustained remissions in established subcutaneous human ovary xenografts. Furthermore, RLIP inhibition by RLIP antibodies exhibited comparable efficacy to antisense and enhanced the effectiveness of carboplatin in MDAH2774 OC xenografts. These investigations underscore RLIP as a central carrier crucial for supporting the survival of cancer cells, positioning it as a suitable focus for cancer treatment.

4.
Biochim Biophys Acta Rev Cancer ; 1879(3): 189106, 2024 May.
Article in English | MEDLINE | ID: mdl-38701936

ABSTRACT

Cervical cancer remains a significant global health burden, necessitating innovative approaches for improved diagnostics and personalized treatment strategies. Precision medicine has emerged as a promising paradigm, leveraging biomarkers and molecular targets to tailor therapy to individual patients. This review explores the landscape of emerging biomarkers and molecular targets in cervical cancer, highlighting their potential implications for precision medicine. By integrating these biomarkers into comprehensive diagnostic algorithms, clinicians can identify high-risk patients at an earlier stage, enabling timely intervention and improved patient outcomes. Furthermore, the identification of specific molecular targets has paved the way for the development of targeted therapies aimed at disrupting key pathways implicated in cervical carcinogenesis. In conclusion, the evolving landscape of biomarkers and molecular targets presents exciting opportunities for advancing precision medicine in cervical cancer. By harnessing these insights, clinicians can optimize treatment selection, enhance patient outcomes, and ultimately transform the management of this devastating disease.


Subject(s)
Biomarkers, Tumor , Molecular Targeted Therapy , Precision Medicine , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/diagnosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Female , Molecular Targeted Therapy/methods
5.
Leukemia ; 38(6): 1236-1245, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643304

ABSTRACT

Targeting the metabolic dependencies of acute myeloid leukemia (AML) cells is a promising therapeutical strategy. In particular, the cysteine and methionine metabolism pathway (C/M) is significantly altered in AML cells compared to healthy blood cells. Moreover, methionine has been identified as one of the dominant amino acid dependencies of AML cells. Through RNA-seq, we found that the two nucleoside analogs 8-chloro-adenosine (8CA) and 8-amino-adenosine (8AA) significantly suppress the C/M pathway in AML cells, and methionine-adenosyltransferase-2A (MAT2A) is one of most significantly downregulated genes. Additionally, mass spectrometry analysis revealed that Venetoclax (VEN), a BCL-2 inhibitor recently approved by the FDA for AML treatment, significantly decreases the intracellular level of methionine in AML cells. Based on these findings, we hypothesized that combining 8CA or 8AA with VEN can efficiently target the Methionine-MAT2A-S-adenosyl-methionine (SAM) axis in AML. Our results demonstrate that VEN and 8CA/8AA synergistically decrease the SAM biosynthesis and effectively target AML cells both in vivo and in vitro. These findings suggest the promising potential of combining 8CA/8AA and VEN for AML treatment by inhibiting Methionine-MAT2A-SAM axis and provide a strong rationale for our recently activated clinical trial.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Drug Synergism , Leukemia, Myeloid, Acute , Methionine Adenosyltransferase , Methionine , S-Adenosylmethionine , Sulfonamides , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Humans , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Sulfonamides/pharmacology , Methionine/metabolism , Methionine/analogs & derivatives , Methionine Adenosyltransferase/metabolism , Methionine Adenosyltransferase/antagonists & inhibitors , Methionine Adenosyltransferase/genetics , Animals , Mice , S-Adenosylmethionine/pharmacology , S-Adenosylmethionine/metabolism , Adenosine/analogs & derivatives , Adenosine/pharmacology , Xenograft Model Antitumor Assays , Cell Line, Tumor
6.
J Org Chem ; 89(9): 6230-6237, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38629386

ABSTRACT

A concise synthesis of pareitropone by oxidative cyclization of a phenolic nitronate is delineated. The use of TMSOTf as an additive to promote the facile formation of a strained norcaradiene intermediate provides convenient access to highly condensed multicyclic tropones in high yields. This synthesis is modular, efficient, and scalable, highlighting the synthetic utility of radical anion coupling reactions in annulation reactions. This work is discussed in the context of total syntheses of the tropoloisoquinoline alkaloids. Also included are the preparation of several congeners and a brief description of their biological activities.


Subject(s)
Antineoplastic Agents , Humans , Molecular Structure , Cyclization , Cell Line, Tumor , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Screening Assays, Antitumor , Oxidation-Reduction
7.
PLoS One ; 19(4): e0298628, 2024.
Article in English | MEDLINE | ID: mdl-38625902

ABSTRACT

BACKGROUND: Latent tuberculosis infection (LTBI) screening and treatment interventions that are tailored to optimize acceptance among the non-U.S.-born population are essential for U.S. tuberculosis elimination. We investigated the impact of medical interpreter use on LTBI treatment acceptance and completion among non-U.S.-born persons in a multisite study. METHODS: The Tuberculosis Epidemiologic Studies Consortium was a prospective cohort study that enrolled participants at high risk for LTBI at ten U.S. sites with 18 affiliated clinics from 2012 to 2017. Non-U.S.-born participants with at least one positive tuberculosis infection test result were included in analyses. Characteristics associated with LTBI treatment offer, acceptance, and completion were evaluated using multivariable logistic regression with random intercepts to account for clustering by enrollment site. Our primary outcomes were whether use of an interpreter was associated with LTBI treatment acceptance and completion. We also evaluated whether interpreter usage was associated treatment offer and whether interpreter type was associated with treatment offer, acceptance, or completion. RESULTS: Among 8,761 non-U.S.-born participants, those who used an interpreter during the initial interview had a significantly greater odds of accepting LTBI treatment than those who did not use an interpreter. There was no association between use of an interpreter and a clinician's decision to offer treatment or treatment completion once accepted. Characteristics associated with lower odds of treatment being offered included experiencing homelessness and identifying as Pacific Islander persons. Lower treatment acceptance was observed in Black and Latino persons and lower treatment completion by participants experiencing homelessness. Successful treatment completion was associated with use of shorter rifamycin-based regimens. Interpreter type was not associated with LTBI treatment offer, acceptance, or completion. CONCLUSIONS: We found greater LTBI treatment acceptance was associated with interpreter use among non-U.S.-born individuals.


Subject(s)
Latent Tuberculosis , Patient Acceptance of Health Care , Humans , Allied Health Personnel , Latent Tuberculosis/drug therapy , Latent Tuberculosis/epidemiology , Latent Tuberculosis/diagnosis , Prospective Studies , United States/epidemiology , Emigrants and Immigrants
8.
Res Sq ; 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38328225

ABSTRACT

Interrupting transmission events to prevent new acquisition of infection and disease is a critical part of tuberculosis (TB) control efforts. However, knowledge gaps in understanding the biology and determinants of TB transmission, including poor estimates of individual infectiousness and the lack of accurate and convenient biomarkers, undermine efforts to develop interventions. Cough-generated aerosol cultures have been found to predict TB transmission better than any microbiological or clinical markers in cohorts from Uganda and Brazil. We hypothesized that highly infectious individuals with pulmonary TB (defined as positive for cough aerosol cultures) have elevated inflammatory markers and unique transcriptional profiles compared to less infectious individuals (negative for cough aerosol cultures). We performed a prospective, longitudinal study using a cough aerosol sampling system as in other studies. We enrolled 142 participants with treatment-naïve pulmonary TB in Nairobi, Kenya, and assessed the association of clinical, microbiologic, and immunologic characteristics with Mtb aerosolization and transmission in 143 household members. Contacts of the forty-three aerosol culture-positive participants (30%) were more likely to have a positive IGRA (85% vs 53%, P = 0.005) and a higher median IGRA IFNγ level (P < 0.001, median 4.25 IU/ml (0.90-5.91) vs. 0.71 (0.01-3.56)) compared to aerosol culture-negative individuals. We found that higher bacillary burden, younger age, and larger mean upper arm circumference were associated with positive aerosol cultures. In addition, novel host inflammatory profiles, including elevated serum C-reactive protein and sputum cytokines, were associated with aerosol culture status. Notably, we found pre-treatment whole blood transcriptional profiles associated with aerosol culture status, independent of bacillary load. Together, these findings suggest that TB infectiousness is associated with epidemiologic characteristics and inflammatory signatures and that these features may be used to identify highly infectious persons. These results provide new public health tools and insights into TB pathogenesis.

9.
Sci Adv ; 10(8): eadk3127, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38394203

ABSTRACT

Epigenetic dysregulation has been reported in multiple cancers including leukemias. Nonetheless, the roles of the epigenetic reader Tudor domains in leukemia progression and therapy remain unexplored. Here, we conducted a Tudor domain-focused CRISPR screen and identified SGF29, a component of SAGA/ATAC acetyltransferase complexes, as a crucial factor for H3K9 acetylation, ribosomal gene expression, and leukemogenesis. To facilitate drug development, we integrated the CRISPR tiling scan with compound docking and molecular dynamics simulation, presenting a generally applicable strategy called CRISPR-Scan Assisted Drug Discovery (CRISPR-SADD). Using this approach, we identified a lead inhibitor that selectively targets SGF29's Tudor domain and demonstrates efficacy against leukemia. Furthermore, we propose that the structural genetics approach used in our study can be widely applied to diverse fields for de novo drug discovery.


Subject(s)
Leukemia , Tudor Domain , Humans , Clustered Regularly Interspaced Short Palindromic Repeats , Acetyltransferases/metabolism , Drug Discovery , Leukemia/drug therapy , Leukemia/genetics
10.
Anim Biosci ; 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38419536

ABSTRACT

Objective: The study aimed to quantify milk production and urinary nitrogen (UN) excretion of dairy cows grazing pastures containing varying contents of plantain (Plantago lanceolata) in different seasons, under a typical farm practice. Methods: Four pasture treatments: perennial ryegrass (Lolium perenne) - white clover (Trifolium repens) (RGWC), RGWC + low plantain rate, RGWC + medium plantain rate, and RGWC + high plantain rate, were established in four adaptation areas (1 ha each) and 20 experimental plots (800 m2 each), and rotationally grazed by dairy cows over 14 grazing events during two lactation years. In each grazing (8-9 days), 60 or 80 Jersey-Friesian lactation cows were assigned to their pasture treatments, adapted to their pastures over the first six days, then each group of 15 or 20 cows were randomly allocated for grazing in five treatment plots over a two or three-day measurement period. Milk, urine, and faecal samples were collected from individual cows during the measurement period. Results: The pasture treatments did not affect milk production, the yield and composition of milk solids, protein, fat, and lactose. However, cows grazing pastures containing between 17-28% dietary plantain reduced UN concentration by 15-27%, decreased UN excretion by 4-9%, and increased urine volume by 22-40%, compared to grazing the RGWC pasture. The change in UN concentration, and urine volume were associated with plantain proportion in the diet and were greater during late summer and autumn than during early summer. Conclusion: Incorporating 17%-28% dietary plantain with RGWC pastures can reduce the risk of nitrogen losses from pastoral systems, while maintaining the milk production of dairy cows.

12.
Sci Adv ; 10(1): eadi0282, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38170773

ABSTRACT

Recent respiratory disease screening studies suggest promising performance of cough classifiers, but potential biases in model training and dataset quality preclude robust conclusions. To examine tuberculosis (TB) cough diagnostic features, we enrolled subjects with pulmonary TB (N = 149) and controls with other respiratory illnesses (N = 46) in Nairobi. We collected a dataset with 33,000 passive coughs and 1600 forced coughs in a controlled setting with similar demographics. We trained a ResNet18-based cough classifier using images of passive cough scalogram as input and obtained a fivefold cross-validation sensitivity of 0.70 (±0.11 SD). The smartphone-based model had better performance in subjects with higher bacterial load {receiver operating characteristic-area under the curve (ROC-AUC): 0.87 [95% confidence interval (CI): 0.87 to 0.88], P < 0.001} or lung cavities [ROC-AUC: 0.89 (95% CI: 0.88 to 0.89), P < 0.001]. Overall, our data suggest that passive cough features distinguish TB from non-TB subjects and are associated with bacterial burden and disease severity.


Subject(s)
Tuberculosis, Pulmonary , Tuberculosis , Humans , Kenya , Cough/diagnosis , Cough/etiology , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/microbiology , Tuberculosis/diagnosis , ROC Curve
13.
Blood Adv ; 8(2): 309-323, 2024 01 23.
Article in English | MEDLINE | ID: mdl-37967356

ABSTRACT

ABSTRACT: Ca2+/calmodulin-dependent protein kinase II γ (CAMKIIγ) has been identified as a potential target for treating cancer. Based on our previous study of berbamine (BBM) as a CAMKIIγ inhibitor, we have synthesized a new BBM derivative termed PA4. Compared with BBM, PA4 showed improved potency and specificity and was more cytotoxic against lymphoma and leukemia than against other types of cancer. In addition to indirectly targeting c-Myc protein stability, we demonstrated that its cytotoxic effects were also mediated via increased reactive oxygen species production in lymphoma cells. PA4 significantly impeded tumor growth in vivo in a xenograft T-cell lymphoma mouse model. Pharmacokinetics studies demonstrated quick absorption into plasma after oral administration, with a maximum concentration of 1680 ± 479 ng/mL at 5.33 ± 2.31 hours. The calculated oral absolute bioavailability was 34.1%. Toxicity assessment of PA4 showed that the therapeutic window used in our experiments was safe for future development. Given its efficacy, safety, and favorable pharmacokinetic profile, PA4 is a potential lead candidate for treating lymphoma.


Subject(s)
Antineoplastic Agents , Benzylisoquinolines , Leukemia , Lymphoma, T-Cell , Humans , Mice , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Benzylisoquinolines/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
14.
Biochim Biophys Acta Rev Cancer ; 1878(6): 189026, 2023 11.
Article in English | MEDLINE | ID: mdl-37980945

ABSTRACT

Gynecological cancers including breast, cervical, ovarian, uterine, and vaginal, pose the greatest threat to world health, with early identification being crucial to patient outcomes and survival rates. The application of machine learning (ML) and artificial intelligence (AI) approaches to the study of gynecological cancer has shown potential to revolutionize cancer detection and diagnosis. The current review outlines the significant advancements, obstacles, and prospects brought about by AI and ML technologies in the timely identification and accurate diagnosis of different types of gynecological cancers. The AI-powered technologies can use genomic data to discover genetic alterations and biomarkers linked to a particular form of gynecologic cancer, assisting in the creation of targeted treatments. Furthermore, it has been shown that the potential benefits of AI and ML technologies in gynecologic tumors can greatly increase the accuracy and efficacy of cancer diagnosis, reduce diagnostic delays, and possibly eliminate the need for needless invasive operations. In conclusion, the review focused on the integrative part of AI and ML based tools and techniques in the early detection and exclusion of various cancer types; together with a collaborative coordination between research clinicians, data scientists, and regulatory authorities, which is suggested to realize the full potential of AI and ML in gynecologic cancer care.


Subject(s)
Artificial Intelligence , Genital Neoplasms, Female , Female , Humans , Machine Learning , Genital Neoplasms, Female/diagnosis , Genital Neoplasms, Female/genetics , Breast , Genomics
15.
Clin Chem ; 69(12): 1409-1419, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37956323

ABSTRACT

BACKGROUND: Novel approaches that allow early diagnosis and treatment monitoring of both human immunodeficiency virus-1 (HIV-1) and tuberculosis disease (TB) are essential to improve patient outcomes. METHODS: We developed and validated an immuno-affinity liquid chromatography-tandem mass spectrometry (ILM) assay that simultaneously quantifies single peptides derived from HIV-1 p24 and Mycobacterium tuberculosis (Mtb) 10-kDa culture filtrate protein (CFP10) in trypsin-digested serum derived from cryopreserved serum archives of cohorts of adults and children with/without HIV and TB. RESULTS: ILM p24 and CFP10 results demonstrated good intra-laboratory precision and accuracy, with recovery values of 96.7% to 104.6% and 88.2% to 111.0%, total within-laboratory precision (CV) values of 5.68% to 13.25% and 10.36% to 14.92%, and good linearity (r2 > 0.99) from 1.0 to 256.0 pmol/L and 0.016 to 16.000 pmol/L, respectively. In cohorts of adults (n = 34) and children (n = 17) with HIV and/or TB, ILM detected p24 and CFP10 demonstrated 85.7% to 88.9% and 88.9% to 100.0% diagnostic sensitivity for HIV-1 and TB, with 100% specificity for both, and detected HIV-1 infection earlier than 3 commercial p24 antigen/antibody immunoassays. Finally, p24 and CFP10 values measured in longitudinal serum samples from children with HIV-1 and TB distinguished individuals who responded to TB treatment from those who failed to respond or were untreated, and who developed TB immune reconstitution inflammatory syndrome. CONCLUSIONS: Simultaneous ILM evaluation of p24 and CFP10 results may allow for early TB and HIV detection and provide valuable information on treatment response to facilitate integration of TB and HIV diagnosis and management.


Subject(s)
HIV Infections , HIV-1 , Mycobacterium tuberculosis , Adult , Child , Humans , Tandem Mass Spectrometry , HIV Infections/diagnosis , Peptides , Chromatography, Liquid , Sensitivity and Specificity
16.
Biochem Pharmacol ; 217: 115847, 2023 11.
Article in English | MEDLINE | ID: mdl-37804871

ABSTRACT

Ovarian cancer (OC) is the most prevalent and deadly cancer of the female reproductive system. Women will continue to be impacted by OC-related morbidity and mortality. Despite the fact that chemotherapy with cisplatin is the main component as the first-line anticancer treatment for OC, chemoresistance and unfavorable side effects are important obstacles to effective treatment. Targets for effective cancer therapy are required for cancer cells but not for non-malignant cells because they are expressed differently in cancer cells compared to normal cells. Targets for cancer therapy should preferably be components that already exist in biochemical and signalling frameworks and that significantly contribute to the development of cancer or regulate the response to therapy. RLIP is an important mercapturic acid pathway transporter that is crucial for survival and therapy resistance in cancers, therefore, we examined the role of RLIP in regulating essential signalling proteins involved in relaying the inputs from upstream survival pathways and mechanisms contributing to chemo-radiotherapy resistance in OC. The findings of our research offer insight into a novel anticancer effect of RLIP depletion/inhibition on OC and might open up new therapeutic avenues for OC therapy.


Subject(s)
Ovarian Neoplasms , Humans , Female , Heterografts , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Signal Transduction , Cisplatin/pharmacology , Cisplatin/therapeutic use , Cell Line, Tumor , Drug Resistance, Neoplasm
17.
bioRxiv ; 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37873324

ABSTRACT

Background: The circadian clock exerts temporal control of metabolic pathways to maintain homeostasis, and its disruption leads to the development of obesity and insulin resistance. In adipose tissue, key regulators of clock machinery orchestrate adipogenic processes via the Wnt signaling pathway to impact mature adipocyte development. Methods: Based on the recent finding of chlorhexidine as a new clock activator, we determined its potential anti-adipogenic activities in distinct adipogenic progenitor models. Furthermore, we report the structural optimization of chlorhexidine leading to the discovery of analogs with improved efficacy in inhibiting adipogenesis. Results: In adipogenic progenitors with Per2::dLuc luciferase reporter, Chlorhexidine shortened clock period length with induction of core clock components. Consistent with its clock-activating function, Chlorhexidine robustly suppressed the lineage commitment and maturation of adipogenic mesenchymal precursors, with comparable effect on inhibiting preadipocyte terminal differentiation. Mechanistically, we show that Chlorhexidine induces signaling components of the Wnt pathway resulting in activation of Wnt activity. Via modification of its chemical scaffold, we generated analogs of chlorhexidine that led to the identification of CM002 as a new clock- activating molecule with improved anti-adipogenic activity. Conclusions: Collectively, our findings uncovered the anti-adipogenic functions of a new class of small molecule clock activators. These compounds provide novel chemical probes to dissect clock function in maintaining metabolic homeostasis and may have therapeutic implications in obesity and associated metabolic disorders.

20.
J Pediatr Intensive Care ; 12(3): 167-172, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37565014

ABSTRACT

High-flow nasal cannula (HFNC) therapy is commonly used in the pediatric intensive care unit (PICU) for postextubation respiratory support. This hypothesis-generating retrospective cohort study aimed to compare postextubation PICU length of stay in infants extubated to HFNC and low flow oxygen (LF) in PICU following cardiac surgery. Of 136 infants (newborn to 1 year) who were intubated and mechanically ventilated in PICU following cardiac surgery, 72 (53%) were extubated to HFNC and 64 (47%) to LF. Compared with patients extubated to LF, those extubated to HFNC had significantly longer durations of cardiopulmonary bypass (152 vs. 109 minutes; p = 0.002), aortic cross-clamp (90 vs. 63 minutes; p = 0.003), and invasive mechanical ventilation (3.2 vs. 1.6 days; p < 0.001), although demographic and preoperative clinical variables were similar. No significant difference was observed in postextubation PICU length of stay between HFNC and LF groups in unadjusted analysis (3.3 vs. 2.6 days, respectively; p = 0.19) and after controlling for potential confounding variables (F [1,125] = 0.17, p = 0.68, R 2 = 0.16). Escalation of therapy was similar between HFNC and LF groups (8.3 vs. 14.1%; p = 0.41). HFNC was effective as rescue therapy for six patients in the LF group requiring escalation of therapy. Need for reintubation was similar between HFNC and LF groups (8.3 vs. 4.7%; p = 0.5). Although extubation to HFNC was associated with a trend toward longer postextubation PICU length of stay and was successfully used as rescue therapy for several infants extubated to LF, our results must be interpreted with caution given the limitations of our study.

SELECTION OF CITATIONS
SEARCH DETAIL