Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 145(16): 9182-9190, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37042705

ABSTRACT

Near-infrared (NIR) light is known to have outstanding optical penetration in biological tissues and to be non-invasive to cells compared with visible light. These characteristics make NIR-specific light optimal for numerous biological applications, such as the sensing of biomolecules or in theranostics. Over the years, significant progress has been achieved in the synthesis of fluorescent cyclophanes for sensing, bioimaging, and making optoelectronic materials. The preparation of NIR-emissive porphyrin-free cyclophanes is, however, still challenging. In an attempt for fluorescence emissions to reach into the NIR spectral region, employing organic tetracationic cyclophanes, we have inserted two 9,10-divinylanthracene units between two of the pyridinium units in cyclobis(paraquat-p-phenylene). Steady-state absorption, fluorescence, and transient-absorption spectroscopies reveal the deep-red and NIR photoluminescence of this cyclophane. This tetracationic cyclophane is highly soluble in water and has been employed successfully as a probe for live-cell imaging in a breast cancer cell line (MCF-7).

2.
J Am Chem Soc ; 144(37): 16841-16854, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36083184

ABSTRACT

Polar and polarizable π-conjugated organic molecules containing push-pull chromophores have been investigated extensively in the past. Identifying unique backbones and building blocks for fluorescent dyes is a timely exercise. Here, we report the synthesis and characterization of a series of fluorescent dyes containing quadrupolar A-D-A constitutions (where A = acceptor and D = donor), which exhibit fluorescence emission at a variety of different wavelengths. We have investigated the effects of different electron-withdrawing groups, located at both termini of a para-terphenylene backbone, by steady-state UV/vis and fluorescence spectroscopy. Pyridine and substituted pyridinium units are also introduced during the construction of the quadrupolar backbones. Depending on the quadrupolarity, fluorescence emission wavelengths cover from 380 to 557 nm. Time-resolved absorption and emission spectroscopy reveal that the photophysical properties of those quadrupolar dyes result from intramolecular charge transfer. One of the dyes we have investigated is a symmetrical box-like tetracationic cyclophane. Its water-soluble tetrachloride, which is non-cytotoxic to cells up to a loading concentration of 1 µM, has been employed in live-cell imaging. When taken up by cells, the tetrachloride emits a green fluorescence emission without any hint of photobleaching or disruption of normal cell behavior. We envision that our design strategy of modifying molecules through the functionalization of the quadrupolar building blocks as chromophores will lead to future generations of fluorescent dyes in which these A-D-A constitutional fragments are incorporated into more complex molecules and polymers for broader photophysical and biological applications.


Subject(s)
Fluorescent Dyes , Pyridines , Alcohols , Fluorescent Dyes/chemistry , Polymers , Water
3.
ACS Nano ; 16(4): 5358-5375, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35357125

ABSTRACT

The use of micrometric-sized vehicles could greatly improve selectivity of cytotoxic compounds as their lack of self-diffusion could maximize their retention in tissues. We have used polysilicon microparticles (SiµP) to conjugate bipyridinium-based compounds, able to induce cytotoxicity under regular intracellular conditions. Homogeneous functionalization in suspension was achieved, where the open-chain structure exhibits a more dense packing than cyclic analogues. The microparticles internalized induce high cytotoxicity per particle in cancerous HeLa cells, and the less densely packed functionalization using cyclophanes promotes higher cytotoxicity per bipy than with open-chain analogues. The self-renewing ability of the particles and their proximity to cell membranes may account for increased lipid peroxidation, achieving toxicity at much lower concentrations than that in solution and in less time, inducing highly efficient cytotoxicity in cancerous cells.


Subject(s)
HeLa Cells , Humans , Lipid Peroxidation , Cell Membrane
4.
J Am Chem Soc ; 143(13): 5053-5059, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33779165

ABSTRACT

The interaction of low-energy light with matter that leads to the production of high-energy light is known as photon upconversion. This phenomenon is of importance because of its potential applications in optoelectronics, energy harvesting, and the biomedical arena. Herein, we report a pillared-paddlewheel metal-organic framework (MOF), constructed from a tetrakis(4-carboxyphenyl)porphyrin sensitizer and a dipyridyl thiazolothiazole annihilator, designed for efficient triplet-triplet annihilation upconversion (TTA-UC). Single-crystal X-ray diffraction studies reveal that the Zn-metalated sensitizers are coordinated to Zn2 nodes in a paddlewheel fashion, forming 2D sheets, to which are linked annihilators, such that each sensitizer is connected to five of them. The precise arrangements of sensitizers with respect to annihilators, and the high annihilator-to-sensitizer ratio, facilitate Dexter energy transfer. This level of organization in an extended structure leads to a high TTA-UC efficiency of 1.95% (theoretical maximum = 50%) at an excitation power density of 25 mW cm-2.

5.
Aging Cell ; 19(11): e13259, 2020 11.
Article in English | MEDLINE | ID: mdl-33079460

ABSTRACT

Fibrosis is a hallmark of aging tissues which often leads to altered architecture and function. The ovary is the first organ to show overt signs of aging, including increased fibrosis in the ovarian stroma. How this fibrosis affects ovarian biomechanics and the underlying mechanisms are unknown. Using instrumental indentation, we demonstrated a quantitative increase in ovarian stiffness, as evidenced by an increase in Young's modulus, when comparing ovaries from reproductively young (6-12 weeks) and old (14-17 months) mice. This ovarian stiffness was dependent on collagen because ex vivo enzyme-mediated collagen depletion in ovaries from reproductively old mice restored their collagen content and biomechanical properties to those of young controls. In addition to collagen, we also investigated the role of hyaluronan (HA) in regulating ovarian stiffness. HA is an extracellular matrix glycosaminoglycan that maintains tissue homeostasis, and its loss can change the biomechanical properties of tissues. The total HA content in the ovarian stroma decreased with age, and this was associated with increased hyaluronidase (Hyal1) and decreased hyaluronan synthase (Has3) expression. These gene expression differences were not accompanied by changes in ovarian HA molecular mass distribution. Furthermore, ovaries from mice deficient in HAS3 were stiffer compared to age-matched WT mice. Our results demonstrate that the ovary becomes stiffer with age and that both collagen and HA matrices are contributing mechanisms regulating ovarian biomechanics. Importantly, the age-associated increase in collagen and decrease in HA are conserved in the human ovary and may impact follicle development and oocyte quality.


Subject(s)
Collagen/metabolism , Extracellular Matrix/metabolism , Hyaluronan Synthases/metabolism , Ovary/physiopathology , Adult , Aging , Animals , Female , Humans , Mice
6.
J Am Chem Soc ; 142(17): 7956-7967, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32233402

ABSTRACT

Collisional intermolecular interactions between excited states form short-lived dimers and complexes that lead to the emergence of excimer/exciplex emission of lower energy, a phenomenon which must be differentiated from the photoluminescence (PL) arising from the monomeric molecules. Although the utilization of noncovalent bonding interactions, leading to the generation of excimer/exciplex PL, has been investigated extensively, precise control of the aggregates and their persistence at very low concentrations remains a rare phenomenon. In the search for a fresh approach, we sought to obtain exciplex PL from permanent structures by incorporating anthracene moieties into pyridinium-containing mechanically interlocked molecules. Beyond the optical properties of the anthracene moieties, their π-extended nature enforces [π···π] stacking that can overcome the Coulombic repulsion between the pyridinium units, affording an efficient synthesis of an octacationic homo[2]catenane. Notably, upon increasing the ionic strength by adding tetrabutylammonium hexafluorophosphate, the catenane yield increases significantly as a result of the decrease in Coulombic repulsions between the pyridinium units. Although the ground-state photophysical properties of the free cyclophane and the catenane are similar and show a charge-transfer band at ∼455 nm, their PL characters are distinct, denoting different excited states. The cyclophane emits at ∼562 nm (quantum yield ϕF = 3.6%, emission lifetime τs = 3 ns in MeCN), which is characteristic of a disubstituted anthracene-pyridinium linker. By contrast, the catenane displays an exciplex PL at low concentration (10-8 M) with an emission band centered on 650 nm (ϕF = 0.5%, τs = 14 ns) in MeCN and at 675 nm in aqueous solution. Live-cell imaging performed in MIAPaCa-2 prostate cancer cells confirmed that the catenane exciplex emission can be detected at micromolar concentrations.


Subject(s)
Anthracenes/chemistry , Humans , Molecular Structure
7.
J Am Chem Soc ; 142(6): 3165-3173, 2020 02 12.
Article in English | MEDLINE | ID: mdl-31944691

ABSTRACT

The rational design of wholly synthetic receptors that bind active substrates with ultrahigh affinities is a challenging goal, especially in water. Here, we report the synthesis of a tricyclic octacationic cyclophane, which exhibits complementary stereoelectronic binding toward a widely used fluorescent dye, perylene diimide, with picomolar affinity in water. The ultrahigh binding affinity is sustained by a large and rigid hydrophobic binding surface, which provides a highly favorable enthalpy and a slightly positive entropy of complexation. The receptor-substrate complex shows significant improvement in optical properties, including red-shifted absorption and emission, turn-on fluorescence, and efficient energy transfer. An unusual single-excitation, dual-emission, imaging study of living cells was performed by taking advantage of a large pseudo-Stokes shift, produced by the efficient energy transfer.


Subject(s)
Fluorescent Dyes/chemistry , Imides/chemistry , Perylene/analogs & derivatives , Cations , Entropy , Fluorescence Resonance Energy Transfer , Perylene/chemistry , Substrate Specificity , Water/chemistry
9.
Theriogenology ; 127: 41-48, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30639695

ABSTRACT

Upon fertilization or parthenogenesis, zinc is released into the extracellular space through a series of exocytic events termed zinc sparks, which are tightly coordinated with intracellular calcium transients. The zinc spark reduces the total amount of intracellular zinc, and this reduction is necessary and sufficient to induce egg activation even in the absence of calcium transients. In addition, this zinc release contributes to the block to polyspermy through modification of the zona pellucida. The zinc spark has been documented in all organisms examined to date including the mouse, two species of nonhuman primates, and human. Here we determined whether zinc sparks occur in the bovine, an important model of gamete development in mono-ovulatory mammalian species. We obtained metaphase II-arrested (MII) bovine eggs following in vitro maturation. Total zinc, assessed in single cells using X-Ray Fluorescence Microscopy, was significantly more abundant in the bovine egg compared to iron and copper. Studies with intracellular fluorescent probes revealed that labile zinc pools are localized to discrete cytoplasmic punctae enriched at the cortex. To determine whether zinc undergoes dynamic fluxes during egg activation, we parthenogenetically activated bovine eggs using two approaches: ionomycin or bovine phospholipase C zeta (bPlcζ). Both these methods induced zinc sparks coordinately with intracellular calcium transients. The zinc spark was also observed in bovine eggs following intracytoplasmic sperm injection. These results establish that zinc is the most abundant transition metal in the bovine egg, and zinc flux during egg activation - induced by chemical activation or sperm - is a highly conserved event across mammalian species.


Subject(s)
Oocytes/metabolism , Sperm-Ovum Interactions , Zinc/metabolism , Animals , Calcium/metabolism , Cattle , Female , In Vitro Oocyte Maturation Techniques/veterinary , Male , Oocytes/physiology , Spectrometry, X-Ray Emission/veterinary , Sperm Injections, Intracytoplasmic/veterinary , Zona Pellucida/drug effects
10.
Environ Sci Technol ; 52(16): 9468-9477, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30004222

ABSTRACT

We fabricated polymer nanocomposites (PNCs) from low-density polyethylene and CdSe quantum dots (QDs) and used these materials to explore potential exposure after long-term storage in different acidic media that could be encountered in food contact applications. While the low-level release of QD-associated mass into all the food simulants was observed, exposure to dilute acetic acid resulted in more than double the mass transfer compared to that which occurred during exposure to dilute hydrochloric acid at the same pH. Conversely, exposure to citric acid resulted in a suppression of QD release. Permeation experiments and confocal microscopy were used to reveal mechanistic details underlying these mass-transfer phenomena. From this work, we conclude that the permeation of undissociated acid molecules into the polymer, limited by partitioning of the acids into the hydrophobic polymer, plays a larger role than pH in determining exposure to nanoparticles embedded in plastics. Although caution must be exercised when extrapolating these results to PNCs incorporating other nanofillers, these findings are significant because they undermine current thinking about the influence of pH on nanofiller release phenomena. From a regulatory standpoint, these results also support current guidance that 3% acetic acid is an acceptable acidic food simulant for PNCs fabricated from hydrophobic polymers because the other acids investigated resulted in significantly less exposure.


Subject(s)
Cadmium Compounds , Nanocomposites , Quantum Dots , Selenium Compounds , Polymers
11.
Reproduction ; 152(3): 245-260, 2016 09.
Article in English | MEDLINE | ID: mdl-27491879

ABSTRACT

Under normal physiological conditions, tissue remodeling in response to injury leads to tissue regeneration without permanent damage. However, if homeostasis between synthesis and degradation of extracellular matrix (ECM) components is altered, fibrosis - or the excess accumulation of ECM - can disrupt tissue architecture and function. Several organs, including the heart, lung and kidney, exhibit age-associated fibrosis. Here we investigated whether fibrosis underlies aging in the ovary - an organ that ages chronologically before other organs. We used Picrosirius Red (PSR), a connective tissue stain specific for collagen I and III fibers, to evaluate ovarian fibrosis. Using bright-field, epifluorescence, confocal and polarized light microscopy, we validated the specific staining of highly ordered PSR-stained fibers in the ovary. We next examined ovarian PSR staining in two mouse strains (CD1 and CB6F1) across an aging continuum and found that PSR staining was minimal in ovaries from reproductively young adult animals, increased in distinct foci in animals of mid-to-advanced reproductive age, and was prominent throughout the stroma of the oldest animals. Consistent with fibrosis, there was a reproductive age-associated increase in ovarian hydroxyproline content. We also observed a unique population of multinucleated macrophage giant cells, which are associated with chronic inflammation, within the ovarian stroma exclusively in reproductively old mice. In fact, several genes central to inflammation had significantly higher levels of expression in ovaries from reproductively old mice relative to young mice. These results establish fibrosis as an early hallmark of the aging ovarian stroma, and this altered microenvironment may contribute to the age-associated decline in gamete quality.


Subject(s)
Aging/pathology , Extracellular Matrix/pathology , Fibrosis/pathology , Ovary/pathology , Reproduction/physiology , Stromal Cells/pathology , Aging/metabolism , Animals , Azo Compounds/chemistry , Cells, Cultured , Coloring Agents/chemistry , Extracellular Matrix/metabolism , Female , Fibrosis/metabolism , Inflammation Mediators/metabolism , Mice , Ovary/metabolism , Stromal Cells/metabolism
12.
J Assist Reprod Genet ; 32(5): 765-9, 2015 May.
Article in English | MEDLINE | ID: mdl-25758987

ABSTRACT

PURPOSE: The incidence of aneuploidy in eggs from women of advanced reproductive age can exceed 60%, making the mammalian egg a unique model system to study the mechanisms of chromosome segregation errors. METHODS: Here we applied a novel biophysical chromosome stretching approach to quantify mechanical stiffness of meiotic chromosomes in the mammalian egg and then documented how these properties changed in a mouse model of physiologic reproductive aging. RESULTS: We found significant differences in chromosome micromechanics, and thus in higher order chromosome structure, coincident with advanced reproductive age, a time that is also unequivocally associated with an increase in egg aneuploidy. CONCLUSIONS: These findings have important implications for both reproductive and cancer biology where aneuploidy plays a central role in aging related disease states.


Subject(s)
Aging/physiology , Chromosome Segregation , Chromosomes/chemistry , Chromosomes/physiology , In Vitro Oocyte Maturation Techniques , Meiosis/physiology , Ovum/physiology , Aneuploidy , Animals , Biomechanical Phenomena , Female , Mice
13.
Mol Reprod Dev ; 82(7-8): 508-17, 2015.
Article in English | MEDLINE | ID: mdl-24375801

ABSTRACT

Digital microscopy has revolutionized quantitative imaging, with binary-encoded computer files serving to capture and store imaging data sets for analysis. With the ever-present use of computers to generate and store imaging data, it becomes increasingly important to understand how these files are created, and how they can be both used and mis-used. This is a particularly important task for the biologist who may have limited background in computer science. Here we discuss some of the basic aspects of digital data storage and use, including file types, storage media, and the choice between commercial and open-source software. Often, open-source software is written by a user or group of users, and then distributed to the scientific community at large. These can be important tools, but there are some hidden costs to this freeware that we will discuss. We will also compare open-source software to commercial imaging software, which is often written for use by non-computer scientists.


Subject(s)
Image Processing, Computer-Assisted/methods , Information Storage and Retrieval/methods , Microscopy , Software , Humans
14.
J Assist Reprod Genet ; 31(8): 1013-28, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24845158

ABSTRACT

PURPOSE: In vitro follicle growth (IVFG) is an investigational fertility preservation technique in which immature follicles are grown in culture to produce mature eggs that can ultimately be fertilized. Although progress has been made in growing primate primary and secondary follicles in vitro, it has been a relatively greater challenge to isolate and culture primordial follicles. The purpose of this study was to develop methods to grow human primordial follicles in vitro using alginate hydrogels. METHODS: We obtained human ovarian tissue for research purposes through the National Physicians Cooperative from nationwide sites and used it to test two methods for culturing primordial follicles. First, primordial follicles were isolated from the ovarian cortex and encapsulated in alginate hydrogels. Second, 1 mm × 1 mm pieces of 500 µm-thick human ovarian cortex containing primordial follicles were encapsulated in alginate hydrogels, and survival and follicle development within the tissue was assessed for up to 6 weeks. RESULTS: We found that human ovarian tissue could be kept at 4 °C for up to 24 h while still maintaining follicle viability. Primordial follicles isolated from ovarian tissue did not survive culture. However, encapsulation and culture of ovarian cortical pieces supported the survival, differentiation, and growth of primordial and primary follicles. Within several weeks of culture, many of the ovarian tissue pieces had formed a defined surface epithelium and contained growing preantral and antral follicles. CONCLUSIONS: The early stages of in vitro human follicle development require the support of the native ovarian cortex.


Subject(s)
Alginates/pharmacology , Cell Differentiation , Cell Proliferation , Ovarian Follicle/cytology , Ovary/cytology , Adolescent , Adult , Cells, Cultured , Child , Child, Preschool , Female , Humans , Hydrogels , Ovarian Follicle/drug effects , Ovarian Follicle/metabolism , Ovary/drug effects , Ovary/metabolism , Tissue Culture Techniques , Young Adult
15.
Biotechnol Bioeng ; 111(7): 1417-29, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24375265

ABSTRACT

The in vitro growth of ovarian follicles is an emerging technology for fertility preservation. Various strategies support the culture of secondary and multilayer follicles from various species including mice, non-human primate, and human; however, the culture of early stage (primary and primordial) follicles, which are more abundant in the ovary and survive cryopreservation, has been limited. Hydrogel-encapsulating follicle culture systems that employed feeder cells, such as mouse embryonic fibroblasts (MEFs), stimulated the growth of primary follicles (70-80 µm); yet, survival was low and smaller follicles (<70 µm) rapidly lost structure and degenerated. These morphologic changes were associated with a breakdown of the follicular basement membrane; hence, this study investigated ascorbic acid based on its role in extracellular matrix (ECM) deposition/remodeling for other applications. The selection of ascorbic acid was further supported by a microarray analysis that suggested a decrease in mRNA levels of enzymes within the ascorbate pathway between primordial, primary, and secondary follicles. The supplementation of ascorbic acid (50 µg/mL) significantly enhanced the survival of primary follicles (<80 µm) cultured in alginate hydrogels, which coincided with improved structural integrity. Follicles developed antral cavities and increased to diameters exceeding 250 µm. Consistent with improved structural integrity, the gene/protein expression of ECM and cell adhesion molecules was significantly changed. This research supports the notion that modifying the culture environment (medium components) can substantially enhance the survival and growth of early stage follicles.


Subject(s)
Alginates/metabolism , Ascorbic Acid/metabolism , Extracellular Matrix/drug effects , Hydrogels/metabolism , Ovarian Follicle/physiology , Animals , Cell Culture Techniques , Cell Survival/drug effects , Cells, Cultured , Culture Media/chemistry , Female , Glucuronic Acid/metabolism , Hexuronic Acids/metabolism , Mice
16.
Aging Cell ; 11(6): 1121-4, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22823533

ABSTRACT

Aneuploidy in human eggs increases with maternal age and can result in infertility, miscarriages, and birth defects. The molecular mechanisms leading to aneuploidy, however, are largely unknown especially in the human where eggs are exceedingly rare and precious. We obtained human eggs from subjects ranging from 16.4 to 49.7 years old following in vitro maturation of oocyte-cumulus complexes isolated directly from surgically removed ovarian tissue. A subset of these eggs was used to investigate how age-associated aneuploidy occurs in the human. The inter-kinetochore distance between sister chromatids increased significantly with maternal age, indicating weakened cohesion. Moreover, we observed unpaired sister chromatids from females of advanced age. We conclude that loss of cohesion with increasing maternal age likely contributes to the well-documented increased incidence of aneuploidy.


Subject(s)
Aging/genetics , Aneuploidy , Chromatids/ultrastructure , Kinetochores/ultrastructure , Maternal Age , Ovum/pathology , Adolescent , Adult , Aging/pathology , Chromosome Segregation , Female , Humans , Male , Meiosis/genetics , Middle Aged
18.
Curr Biol ; 21(7): 598-605, 2011 Apr 12.
Article in English | MEDLINE | ID: mdl-21439826

ABSTRACT

The role of centrosomes and centrioles during mitotic spindle assembly in vertebrates remains controversial. In cell-free extracts and experimentally derived acentrosomal cells, randomly oriented microtubules (MTs) self-organize around mitotic chromosomes and assemble anastral spindles. However, vertebrate somatic cells normally assemble a connected pair of polarized, astral MT arrays--termed an amphiaster ("a star on both sides")--that is formed by the splitting and separation of the microtubule-organizing center (MTOC) well before nuclear envelope breakdown (NEB). Whether amphiaster formation requires splitting of duplicated centrosomes is not known. We found that when centrosomes were removed from living vertebrate cells early in their cell cycle, an acentriolar MTOC reassembled, and, prior to NEB, a functional amphiastral spindle formed. Cytoplasmic dynein, dynactin, and pericentrin are all recruited to the interphase aMTOC, and the activity of kinesin-5 is needed for amphiaster formation. Mitosis proceeded on time and these karyoplasts divided in two. However, ~35% of aMTOCs failed to split and separate before NEB, and these entered mitosis with persistent monastral spindles. Chromatin-associated RAN-GTP--the small GTPase Ran in its GTP bound state--could not restore bipolarity to monastral spindles, and these cells exited mitosis as single daughters. Our data reveal the novel finding that MTOC separation and amphiaster formation does not absolutely require the centrosome, but, in its absence, the fidelity of bipolar spindle assembly is highly compromised.


Subject(s)
Centrosome/metabolism , Chromosomes, Mammalian/metabolism , Microtubule-Organizing Center/metabolism , Spindle Apparatus/metabolism , Animals , Antigens/metabolism , Cell Cycle , Cell Line , Centrioles/metabolism , Chlorocebus aethiops , Dynactin Complex , Dyneins/metabolism , Kinesins/metabolism , Microsurgery , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Mitosis , Nuclear Envelope/metabolism , Vertebrates/metabolism , ran GTP-Binding Protein/metabolism
19.
J Cell Physiol ; 225(2): 454-65, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20458743

ABSTRACT

When CHO cells are arrested in S-phase, they undergo repeated rounds of centrosome duplication without cell-cycle progression. While the increase is slow and asynchronous, the number of centrosomes in these cells does rise with time. To investigate mechanisms controlling this duplication, we have arrested CHO cells in S-phase for up to 72 h, and coordinately inhibited new centriole formation by treatment with the microtubule poison colcemid. We find that in such cells, the pre-existing centrosomes remain, and a variable number of foci--containing alpha/gamma-tubulin and centrin 2--assemble at the nuclear periphery. When the colcemid is washed out, the nuclear-associated foci disappear, and cells assemble new centriole-containing centrosomes, which accumulate the centriole scaffold protein SAS-6, nucleate microtubule asters, and form functional mitotic spindle poles. The number of centrosomes that assemble following colcemid washout increases with duration of S-phase arrest, even though the number of nuclear-associated foci or pre-existing centrosomes does not increase. This suggests that during S-phase, a cryptic generative event occurs repeatedly, even in the absence of new triplet microtubule assembly. When triplet microtubule assembly is restored, these cryptic generative events become realized, and multiple centriole-containing centrosomes assemble.


Subject(s)
Cell Cycle/physiology , Centrosome/metabolism , Microtubules/physiology , Animals , CHO Cells , Cell Cycle/drug effects , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Centrosome/drug effects , Cricetinae , Cricetulus , Demecolcine/pharmacology , Fluoroimmunoassay , Gene Expression Regulation/physiology , Green Fluorescent Proteins , Hydroxyurea/pharmacology , Nucleic Acid Synthesis Inhibitors/pharmacology , Tubulin Modulators/pharmacology
20.
Semin Cell Dev Biol ; 21(3): 290-9, 2010 May.
Article in English | MEDLINE | ID: mdl-20109573

ABSTRACT

In mammalian cultured cells the initiation of cytokinesis is regulated - both temporally and spatially - by the overlapping, anti-parallel microtubules of the spindle midzone. This region recruits several key central spindle components: PRC-1, polo-like kinase 1 (Plk-1), the centralspindlin complex, and the chromosome passenger complex (CPC), which together serve to stabilize the microtubule overlap, and also to coordinate the assembly of the cortical actin/myosin cytoskeleton necessary to physically cleave the cell in two. The localization of these crucial elements to the spindle midzone requires members of the kinesin superfamily of microtubule-based motor proteins. Here we focus on reviewing the role played by a variety of kinesins in both building and operating the spindle midzone machinery during cytokinesis.


Subject(s)
Kinesins/physiology , Spindle Apparatus , Actins/metabolism , Actomyosin/chemistry , Animals , Cell Cycle Proteins/metabolism , Cytokinesis , Humans , Microtubule Proteins/metabolism , Microtubules/metabolism , Mitosis , Models, Biological , Protein Binding , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Polo-Like Kinase 1
SELECTION OF CITATIONS
SEARCH DETAIL
...