Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(28): eado3501, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38985859

ABSTRACT

Macrocyclic drugs can address an increasing range of molecular targets but enabling central nervous system (CNS) access to these drugs has been viewed as an intractable problem. We designed and synthesized a series of quinolinium-modified cyclosporine derivatives targeted to the mitochondrial cyclophilin D protein. Modification of the cation to enable greater delocalization was confirmed by x-ray crystallography of the cations. Critically, greater delocalization improved brain concentrations. Assessment of the compounds in preclinical assays and for pharmacokinetics identified a molecule JP1-138 with at least 20 times the brain levels of a non-delocalized compound or those reported for cyclosporine. Levels were maintained over 24 hours together with low hERG potential. The paradigm outlined here could have widespread utility in the treatment of CNS diseases.


Subject(s)
Quinolinium Compounds , Animals , Humans , Quinolinium Compounds/chemistry , Quinolinium Compounds/pharmacokinetics , Cyclosporine/chemistry , Cyclosporine/pharmacokinetics , Central Nervous System/metabolism , Central Nervous System/drug effects , Crystallography, X-Ray , Peptides/chemistry , Peptides/pharmacokinetics , Brain/metabolism , Brain/drug effects , Mice
2.
Chem Sci ; 7(4): 2743-2747, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-28660050

ABSTRACT

A de novo approach for the rapid construction of orthogonally protected l- and d-deoxysugars and analogues is described. A novel and robust silicon-acetal undergoes Prins cyclisations with a series of homoallylic alcohols in high yield and excellent stereocontrol. Modified Tamao-Fleming oxidation of the resulting silyltetrahydropyrans gives direct access to deoxyglycoside analogues and the approach was showcased in the synthesis of protected l-oliose, a component of the anticancer agent aclacinomycin A.

3.
Org Lett ; 15(22): 5734-7, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24229077

ABSTRACT

A versatile method for the synthesis of orthogonally protected D-xylose 1-thioethers is described using unusual silyl group migrations which were pivotal in the synthesis of 4,8-dimethyl-6-O-(2',4'-di-O-methyl-ß-D-xylopyranosyl)hydroxyquinoline confirming the structure and absolute configuration of the natural product.


Subject(s)
Alkaloids/chemical synthesis , Hydroxyquinolines/chemical synthesis , Silanes/chemistry , Xylose/analogs & derivatives , Xylose/chemistry , Xylose/chemical synthesis , Alkaloids/chemistry , Biological Products/chemistry , Hydroxyquinolines/chemistry , Magnetic Resonance Spectroscopy , Molecular Conformation , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL