Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Neuromuscul Disord ; 34: 9-18, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38052667

ABSTRACT

Acute liver failure has been reported sporadically in patients with spinal muscular atrophy (SMA) and other neuromuscular disorders with low skeletal muscle mass receiving recommended dosages of acetaminophen. It is suggested that low skeletal muscle mass may add to the risk of toxicity. We aimed to describe the pharmacokinetics and safety of acetaminophen in patients with SMA. We analyzed acetaminophen metabolites and liver biomarkers in plasma from SMA patients and healthy controls (HC) every hour for six or eight hours on day 1 and day 3 of treatment with therapeutic doses of acetaminophen. Twelve patients with SMA (six adults and six children) and 11 HC participated in the study. Adult patients with SMA had significantly lower clearance of acetaminophen compared to HC (14.1 L/h vs. 21.5 L/h). Formation clearance of acetaminophen metabolites, glucuronide, sulfate, and oxidative metabolites were two-fold lower in the patients compared to HC. The liver transaminases and microRNAs increased nine-fold in one adult SMA patient after two days of treatment. The other patients and HC did not develop abnormal liver biomarkers. In this study, patients with SMA had lower clearance and slower metabolism of acetaminophen, and one patient developed liver involvement. We recommend giving 15 mg/kg/dose to SMA adults (with a maximum of 4000 mg/day) and monitoring standard liver biomarkers 48 h after first-time treatment of acetaminophen.


Subject(s)
Chemical and Drug Induced Liver Injury , Muscular Atrophy, Spinal , Spinal Muscular Atrophies of Childhood , Adult , Child , Humans , Acetaminophen/adverse effects , Muscular Atrophy, Spinal/drug therapy , Biomarkers , Chemical and Drug Induced Liver Injury/etiology , Spinal Muscular Atrophies of Childhood/drug therapy
2.
J Inherit Metab Dis ; 44(5): 1186-1198, 2021 09.
Article in English | MEDLINE | ID: mdl-33934389

ABSTRACT

Mitochondrial myopathies (MM) are caused by mutations that typically affect genes involved in oxidative phosphorylation. Main symptoms are exercise intolerance and fatigue. Currently, there is no specific treatment for MM. Resveratrol (RSV) is a nutritional supplement that in preclinical studies has been shown to stimulate mitochondrial function. We hypothesized that RSV could improve exercise capacity in patients with MM. The study design was randomized, double-blind, cross-over and placebo-controlled. Eleven patients with genetically verified MM were randomized to receive either 1000 mg/day RSV or placebo (P) for 8 weeks followed by a 4-week washout and then the opposite treatment. Primary outcomes were changes in heart rate (HR) during submaximal cycling exercise and peak oxygen utilization (VO2 max) during maximal exercise. Secondary outcomes included reduction in perceived exertion, changes in lactate concentrations, self-rated function (SF-36) and fatigue scores (FSS), activities of electron transport chain complexes I and IV in mononuclear cells and mitochondrial biomarkers in muscle tissue among others. There were no significant differences in primary and secondary outcomes between treatments. Mean HR changes were -0.3 ± 4.3 (RSV) vs 1.8 ± 5.0 bpm (P), P = .241. Mean VO2 max changes were 0.7 ± 1.4 (RSV) vs -0.2 ± 2.3 mL/min/kg (P), P = .203. The study provides evidence that 1000 mg RSV daily is ineffective in improving exercise capacity in adults with MM. These findings indicate that previous in vitro studies suggesting a therapeutic potential for RSV in MM, do not translate into clinically meaningful effects in vivo.


Subject(s)
Mitochondrial Myopathies/drug therapy , Resveratrol/therapeutic use , Adult , Aged , Cross-Over Studies , Double-Blind Method , Female , Humans , Male , Middle Aged , Resveratrol/pharmacology
3.
Mitochondrion ; 50: 35-41, 2020 01.
Article in English | MEDLINE | ID: mdl-31669236

ABSTRACT

OBJECTIVE: We investigated if Growth and Differentiation Factor 15 (GDF-15) can be used as a biomarker to distinguish patients with mitochondrial myopathy from patients with other myopathies. METHODS: Serum GDF-15 was measured in 28 patients with mitochondrial disease, 24 with metabolic myopathies, 27 with muscular dystrophy and 21 healthy controls. RESULTS AND CONCLUSIONS: Our findings indicate that elevated GDF-15 can distinguish patients with mitochondrial myopathy from other myopathies, including metabolic myopathies. This suggests that increases in GDF-15 is specific to respiratory chain dysfunction rather than general metabolic dysfunction or muscle defect.


Subject(s)
Growth Differentiation Factor 15/blood , Mitochondrial Myopathies/metabolism , Adolescent , Adult , Aged , Biomarkers/blood , Biomarkers/metabolism , Exercise Test , Female , Gene Expression Regulation/physiology , Humans , Male , Middle Aged , Mitochondrial Myopathies/genetics , Oxidative Stress , Pilot Projects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL