Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Med Genet A ; 185(9): 2719-2738, 2021 09.
Article in English | MEDLINE | ID: mdl-34087052

ABSTRACT

Cyclin D2 (CCND2) is a critical cell cycle regulator and key member of the cyclin D2-CDK4 (DC) complex. De novo variants of CCND2 clustering in the distal part of the protein have been identified as pathogenic causes of brain overgrowth (megalencephaly, MEG) and severe cortical malformations in children including the megalencephaly-polymicrogyria-polydactyly-hydrocephalus (MPPH) syndrome. Megalencephaly-associated CCND2 variants are localized to the terminal exon and result in accumulation of degradation-resistant protein. We identified five individuals from three unrelated families with novel variants in the proximal region of CCND2 associated with microcephaly, mildly simplified cortical gyral pattern, symmetric short stature, and mild developmental delay. Identified variants include de novo frameshift variants and a dominantly inherited stop-gain variant segregating with the phenotype. This is the first reported association between proximal CCND2 variants and microcephaly, to our knowledge. This series expands the phenotypic spectrum of CCND2-related disorders and suggests that distinct classes of CCND2 variants are associated with reciprocal effects on human brain growth (microcephaly and megalencephaly due to possible loss or gain of protein function, respectively), adding to the growing paradigm of inverse phenotypes due to dysregulation of key brain growth genes.


Subject(s)
Brain/abnormalities , Cyclin D2/genetics , Hydrocephalus/pathology , Megalencephaly/pathology , Mutation , Polydactyly/pathology , Polymicrogyria/pathology , Adolescent , Adult , Child , Female , Humans , Hydrocephalus/genetics , Infant , Male , Megalencephaly/genetics , Polydactyly/genetics , Polymicrogyria/genetics
2.
PLoS Biol ; 18(8): e3000762, 2020 08.
Article in English | MEDLINE | ID: mdl-32760088

ABSTRACT

Centrosomes, the main microtubule organizing centers (MTOCs) of metazoan cells, contain an older "mother" and a younger "daughter" centriole. Stem cells either inherit the mother or daughter-centriole-containing centrosome, providing a possible mechanism for biased delivery of cell fate determinants. However, the mechanisms regulating centrosome asymmetry and biased centrosome segregation are unclear. Using 3D-structured illumination microscopy (3D-SIM) and live-cell imaging, we show in fly neural stem cells (neuroblasts) that the mitotic kinase Polo and its centriolar protein substrate Centrobin (Cnb) accumulate on the daughter centriole during mitosis, thereby generating molecularly distinct mother and daughter centrioles before interphase. Cnb's asymmetric localization, potentially involving a direct relocalization mechanism, is regulated by Polo-mediated phosphorylation, whereas Polo's daughter centriole enrichment requires both Wdr62 and Cnb. Based on optogenetic protein mislocalization experiments, we propose that the establishment of centriole asymmetry in mitosis primes biased interphase MTOC activity, necessary for correct spindle orientation.


Subject(s)
Cell Cycle Proteins/genetics , Centrioles/metabolism , Centrosome/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Mitosis , Protein Serine-Threonine Kinases/genetics , Animals , Animals, Genetically Modified , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Cycle Proteins/metabolism , Centrioles/ultrastructure , Centrosome/ultrastructure , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Interphase , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Optogenetics/methods , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Red Fluorescent Protein
3.
J Infect Dis ; 219(1): 59-67, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30107412

ABSTRACT

Background: Transplacental respiratory syncytial virus (RSV) antibody transfer has been characterized, but little is known about the protective effect of breast milk RSV-specific antibodies. Serum antibodies against the prefusion RSV fusion protein (pre-F) exhibit high neutralizing activity. We investigate protection of breast milk pre-F antibodies against RSV acute respiratory infection (ARI). Methods: Breast milk at 1, 3, and 6 months postpartum and midnasal swabs during infant illness episodes were collected in mother-infant pairs in Nepal. One hundred seventy-four infants with and without RSV ARI were matched 1:1 by risk factors for RSV ARI. Pre-F immunoglobulin A (IgA) and immunoglobulin G (IgG) antibody levels were measured in breast milk. Results: The median breast milk pre-F IgG antibody concentration before illness was lower in mothers of infants with RSV ARI (1.4 [interquartile range {IQR}, 1.1-1.6] log10 ng/mL) than without RSV ARI (1.5 [IQR, 1.3-1.8] log10 ng/mL) (P = .001). There was no difference in median maternal pre-F IgA antibody concentrations in cases vs controls (1.7 [IQR, 0.0-2.2] log10 ng/mL vs 1.7 [IQR, 1.2-2.2] log10 ng/mL, respectively; P = .58). Conclusions: Low breast milk pre-F IgG antibodies before RSV ARI support a potential role for pre-F IgG as a correlate of protection against RSV ARI. Induction of breast milk pre-F IgG may be a mechanism of protection for maternal RSV vaccines.


Subject(s)
Immunoglobulin G/analysis , Milk, Human/immunology , Respiratory Syncytial Virus Infections/prevention & control , Adult , Antibodies, Viral/analysis , Cohort Studies , Female , Humans , Immunoglobulin A/analysis , Infant , Male , Nepal , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Vaccines/administration & dosage , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/immunology , Viral Fusion Proteins/immunology , Young Adult
4.
Lancet Infect Dis ; 18(10): e295-e311, 2018 10.
Article in English | MEDLINE | ID: mdl-29914800

ABSTRACT

The global burden of disease caused by respiratory syncytial virus (RSV) is increasingly recognised, not only in infants, but also in older adults (aged ≥65 years). Advances in knowledge of the structural biology of the RSV surface fusion glycoprotein have revolutionised RSV vaccine development by providing a new target for preventive interventions. The RSV vaccine landscape has rapidly expanded to include 19 vaccine candidates and monoclonal antibodies (mAbs) in clinical trials, reflecting the urgency of reducing this global health problem and hence the prioritisation of RSV vaccine development. The candidates include mAbs and vaccines using four approaches: (1) particle-based, (2) live-attenuated or chimeric, (3) subunit, (4) vector-based. Late-phase RSV vaccine trial failures highlight gaps in knowledge regarding immunological protection and provide lessons for future development. In this Review, we highlight promising new approaches for RSV vaccine design and provide a comprehensive overview of RSV vaccine candidates and mAbs in clinical development to prevent one of the most common and severe infectious diseases in young children and older adults worldwide.


Subject(s)
Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/immunology , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Global Health , Humans , Nanoparticles , World Health Organization
SELECTION OF CITATIONS
SEARCH DETAIL
...