Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 11(6): e0210023, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37823660

ABSTRACT

IMPORTANCE: Aromatic compounds are globally abundant organic molecules with a multitude of natural and anthropogenic sources, underpinning the relevance of their biodegradation. A. aromaticum EbN1T is a well-studied environmental betaproteobacterium specialized on the anaerobic degradation of aromatic compounds. The here studied responsiveness toward phenol in conjunction with the apparent high ligand selectivity (non-promiscuity) of its PheR sensor and those of the related p-cresol (PcrS) and p-ethylphenol (EtpR) sensors are in accord with the substrate-specificity and biochemical distinctiveness of the associated degradation pathways. Furthermore, the present findings advance our general understanding of the substrate-specific regulation of the strain's remarkable degradation network and of the concentration thresholds below which phenolic compounds become essentially undetectable and as a consequence should escape substantial biodegradation. Furthermore, the findings may inspire biomimetic sensor designs for detecting and quantifying phenolic contaminants in wastewater or environments.


Subject(s)
Phenol , Phenols , Phenol/metabolism , Phenols/metabolism , Rhodocyclaceae/metabolism , Biodegradation, Environmental , Anaerobiosis
2.
Nature ; 594(7864): 535-540, 2021 06.
Article in English | MEDLINE | ID: mdl-34163056

ABSTRACT

Night-migratory songbirds are remarkably proficient navigators1. Flying alone and often over great distances, they use various directional cues including, crucially, a light-dependent magnetic compass2,3. The mechanism of this compass has been suggested to rely on the quantum spin dynamics of photoinduced radical pairs in cryptochrome flavoproteins located in the retinas of the birds4-7. Here we show that the photochemistry of cryptochrome 4 (CRY4) from the night-migratory European robin (Erithacus rubecula) is magnetically sensitive in vitro, and more so than CRY4 from two non-migratory bird species, chicken (Gallus gallus) and pigeon (Columba livia). Site-specific mutations of ErCRY4 reveal the roles of four successive flavin-tryptophan radical pairs in generating magnetic field effects and in stabilizing potential signalling states in a way that could enable sensing and signalling functions to be independently optimized in night-migratory birds.


Subject(s)
Animal Migration , Cryptochromes/genetics , Magnetic Fields , Songbirds , Animals , Avian Proteins/genetics , Chickens , Columbidae , Retina
SELECTION OF CITATIONS
SEARCH DETAIL
...