Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Molecules ; 29(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38792132

ABSTRACT

In this study, different extraction methods and conditions were used for the extraction of antioxidants from brown macroalgae Fucus spiralis. The extraction methodologies used were ultrasound-assisted extraction (ultrasonic bath and ultrasonic probe), extraction with a vortex, extraction with an Ultra-Turrax® homogenizer, and high-pressure-assisted extraction. The extracts were analyzed for their total phenolic content (TPC) and their antioxidant activity, and evaluated through the 2,2-difenil-1-picrilhidrazil (DPPH) free radical scavenging method and ferric reducing antioxidant power (FRAP) assay. Ultrasonic probe-assisted extraction yielded the highest values of TPC (94.78-474.16 mg gallic acid equivalents/g extract). Regarding the antioxidant activity, vortex-assisted extraction gave the best DPPH results (IC50 1.89-16 µg/mL), while the highest FRAP results were obtained using the Ultra-Turrax® homogenizer (502.16-1188.81 µmol ascorbic acid equivalents/g extract). For each extraction method, response surface methodology was used to analyze the influence of the experimental conditions "extraction time" (t), "biomass/solvent ratio" (R), "solvent" (S, water % in water/ethanol mixture), and "pressure" (P) on TPC, DPPH, and FRAP of the F. spiralis extracts. In general, higher TPC content and higher antioxidant capacity (lower IC50 and higher FRAP) were obtained with higher R, t, and P, and lower S (higher ethanol %). The model regarding the combined effects of independent variables t, R, and S on the FRAP response values for vortex-assisted extractions best fitted the experimental data (R2 0.957), with optimal extraction conditions of t = 300 s, R = 50 g, and S = 25%.


Subject(s)
Antioxidants , Fucus , Fucus/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Phenols/chemistry , Phenols/isolation & purification , Phenols/analysis , Seaweed/chemistry , Biphenyl Compounds/chemistry , Biphenyl Compounds/antagonists & inhibitors , Picrates/chemistry , Picrates/antagonists & inhibitors , Solvents/chemistry
2.
Molecules ; 26(19)2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34641350

ABSTRACT

Due to the high consumption of fat-rich processed foods, efforts are being done to reduce their saturated fat (SFA) contents and replace it with polyunsaturated fatty acids (PUFA), creating a necessity to find alternative PUFA sources. Macroalgae, being a promising natural source of healthy food, may be such an alternative. The fatty acid (FA) profile of Fucus spiralis, Bifurcaria bifurcata, Ulva lactuca, and Saccorhiza polyschides were determined through direct transesterification and their seasonal variation was studied. F. spiralis showed the highest FA content overall, B. bifurcata presented the higher PUFA amounts, and U. lactuca and S. polyschides the higher SFA. The production of FA was shown to be influenced by the seasons. Spring and summer seemed to induce the FA production in F. spiralis and B. bifurcata while in U. lactuca the same was verified in winter. U. lactuca presented a ω6/ω3 ratio between 0.59 and 1.38 while B. bifurcata presented a ratio around 1.31. The study on the seasonal variations of the macroalgal FA profile can be helpful to understand the best season to yield FA of interest, such as ALA, EPA, and DHA. It may also provide valuable information on the best culturing conditions for the production of desired FAs.


Subject(s)
Fatty Acids/analysis , Seasons , Seaweed/classification , Seaweed/metabolism , Species Specificity
3.
An Acad Bras Cienc ; 93(4): e20190943, 2021.
Article in English | MEDLINE | ID: mdl-34586311

ABSTRACT

Entomopathogenic nematodes (EPNs) can control pests due to their mutual association with bacteria. The use of these biological control agents is increasing worldwide due to advances in research about its control efficiency, range of action and mass production. The identification of EPNs adapted to specific environmental and climatic conditions is important for sustainable pest suppression in integrated management (IPM) programs. The objective is to report, for the first time, the occurrence of the Steinernema diaprepesi in Brazil. Steel mesh traps with Galleria mellonella Linnaeus (Lepidoptera: Pyralidae) larvae were buried in red latosol cultivated with Eucalyptus. Infective juveniles (IJs) were isolated from dead larvae and multiplied in healthy ones of this host to confirm its pathogenicity and to start a laboratory population from the strain found in the field. The DNA of the IJs was extracted and amplified using PCR technique with the universal primers D2A and D3B. The detection of S. diaprepesi is the first report of this nematode in Brazil, increasing the knowledge about its distribution in the world and the diversity of EPNs that must be considered as agents of biological pest control in the country.


Subject(s)
Moths , Rhabditida , Animals , Brazil , Larva , Pest Control, Biological
4.
R Soc Open Sci ; 7(8): 200282, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32968508

ABSTRACT

Entomopathogenic nematodes (EPNs) can control pests due to mutualistic association with bacteria that reproduce and kill the host from septicemia, making the environment favourable for nematode development and reproduction. The objective of this study was to identify an EPN isolate collected in eucalyptus cultivation and to determine its pathogenicity with regard to Gonipterus platensis Marelli (Coleoptera: Curculionidae). Four steel-mesh traps with two seventh-instar Galleria mellonella larvae were buried 5 cm deep in the soil in a commercial Eucalyptus plantation. After 7 days, the traps were packed in plastic bags and transported to laboratory to isolate the EPNs using White traps. The obtained nematodes were multiplied in G. mellonella larvae and identified by sequencing their D2/D3 expansion of the 28S rDNA region by polymerase chain reaction (PCR) and specific primers for ITS regions. Steinernema diaprepesi was identified and inoculated into G. platensis pupae at doses of 500, 1000 and 5000 infective juveniles (IJs) to determine its pathogenicity to this pest. At 8 days after inoculation, the mortality rate of the G. platensis pupae was 80% with the lowest concentration and 100% with the others. The emergence of nematodes and the rapid degradation of G. platensis pupae were observed in those inoculated with IJs. The pathogenicity to the G. platensis pupae indicates potential for using this nematode in the integrated management of this insect.

5.
Foods ; 9(4)2020 Apr 06.
Article in English | MEDLINE | ID: mdl-32268534

ABSTRACT

Fucus spiralis is an edible brown seaweed (SW) found in the Portuguese Coast. It has been reported to have high antioxidant activity, which may elicit a potential use for the food industry. However, little information is available on how the SW behaves during the digestive process and how the freeze-drying process might affect the bioaccessibility of the different compounds. Therefore, antioxidant activity, total polyphenols, lipid, and fatty acid contents were measured before and after in vitro simulation of the human digestive process, both in fresh and freeze-dry SW. F. spiralis had a lipid content of 3.49 ± 0.3% of dry weight (DW), which is a usual amount described for this SW genus. The total lipid bioaccessibility was 12.1 ± 0.1%. The major omega-3 fatty acid detected was eicosapentaenoic acid, 7.5 ± 0.1%, with a bioaccessibility percentage of 13.0 ± 1.0%. Four different methods-total phenolic content (TPC), ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), and 1,1-diphenyl-2-picryl-hydrazyl (DPPH)-were used to assess the antioxidant activity of F. spiralis. The bioaccessibility of the antioxidants studied, ranged between 42.7% and 59.5%, except the bioaccessibility of polyphenols in freeze-dried SW (23.0% ± 1.0%), suggesting that the freeze-drying process reduces the bioaccessibility of these compounds.

6.
Arch Virol ; 164(6): 1677-1682, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30955090

ABSTRACT

We describe an unexpected feature observed for the heterologous expression of the Thyrinteina arnobia cypovirus polyhedrin from a recombinant baculovirus infection in different insect cell lines. The in cellulo-formed crystals varied in size and shape depending on the cell line. Crystals formed in Trichoplusia ni-derived cells were cubic (0.1-2 µm) and localized in both the nucleus and cytoplasm, whereas those formed in Spodoptera frugiperda-derived cells were ovate and ellipsoidal (0.1-3 µm) and also localized in both the nucleus and cytoplasm. The molecular basis for differences in the morphology, size, and location of cypovirus occlusion bodies is unclear, and cellular proteins might play a role in their formation and location.


Subject(s)
Baculoviridae/genetics , Occlusion Body Matrix Proteins/metabolism , Recombinant Proteins/metabolism , Reoviridae/metabolism , Spodoptera/cytology , Animals , Baculoviridae/metabolism , Cell Line , Cell Nucleus/metabolism , Cell Nucleus/virology , Crystallization , Cytoplasm/metabolism , Cytoplasm/virology , Microscopy, Electron, Scanning , Occlusion Body Matrix Proteins/genetics , Reoviridae/genetics , Sf9 Cells , Spodoptera/virology
7.
Mar Drugs ; 17(4)2019 Apr 22.
Article in English | MEDLINE | ID: mdl-31013628

ABSTRACT

Chitin was extracted from Polybius henslowii, a swimming crab, captured in large quantities throughout the Portuguese coast by purse seine vessels as bycatch. After standard chitin extraction procedures, water-soluble chitosan products were obtained via two different methods: (1) N-acetylation with the addition of acetic anhydride and (2) a reaction with hydrogen peroxide. The chemical structure and molecular weight of chitosan derivatives, water-soluble chitosan (WSC) and chitooligosaccharides (COS), were confirmed by Fourier Transform Infrared Spectroscopy (FT-IR) and gel permeation chromatography (GPC). Antioxidant and metal chelation activities were evaluated, and the growth inhibition capacity was tested on four phytopatogens. The chitooligosaccharides from pereopods (pCOS) and shell body parts (sCOS) inhibited all fungal species tested, particularly Cryphonectria parasitica with 84.7% and 85.5%, respectively. Both radical scavenging and antifungal activities proved to be dose-dependent. Chitooligosaccharides with a low molecular weight (2.7, 7.4, and 10.4 Kg·mol-1) showed the highest activity among all properties tested. These results suggested that chitosan derivatives from P. henslowii raw material could potentially be used against phytopathogens or as ingredient in cosmetics and other products related to oxidative stress.


Subject(s)
Antifungal Agents/pharmacology , Antioxidants/pharmacology , Brachyura/chemistry , Chitosan/pharmacology , Animals , Antifungal Agents/chemistry , Antioxidants/chemistry , Chitin/analogs & derivatives , Chitin/chemistry , Chitin/pharmacology , Chitosan/chemistry , Fungi/drug effects , Hydrogen Peroxide/pharmacology , Molecular Weight , Oligosaccharides , Polymers/chemistry , Polymers/pharmacology , Solubility , Spectroscopy, Fourier Transform Infrared/methods , Water
8.
Microbiologyopen ; 8(11): e00824, 2019 11.
Article in English | MEDLINE | ID: mdl-31033207

ABSTRACT

Macroalgae-associated bacteria have already proved to be an interesting source of compounds with therapeutic potential. Accordingly, the main aim of this study was to characterize Asparagopsis armata-associated bacteria community and evaluate their capacity to produce substances with antitumor and antimicrobial potential. Bacteria were selected according to their phenotype and isolated by the streak plate technique. The identification was carried out by the RNA ribosomal 16s gene amplification through PCR techniques. The antimicrobial activities were evaluated against seven microorganisms (Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Salmonella enteritidis, Staphylococcus aureus, Saccharomyces cerevisiae, Candida albicans) by following their growth through spectrophotometric readings. Antitumor activities were evaluated in vitro on human cell lines derived from hepatocellular (HepG-2) and breast carcinoma (MCF-7) using the MTT method. The present work identified a total of 21 bacteria belonging to the genus Vibrio, Staphylococcus, Shewanella, Alteromonadaceae, Bacillus, Cobetia, and Photobacterium, with Vibrio being the most abundant (42.86%). The extract of Shewanella sp. ASP 26 bacterial strain induced the highest antimicrobial activity, namely against Bacillus subtilis and Staphylococcus aureus with an IC50 of 151.1 and 346.8 µg/mL, respectively. These bacteria (Shewanella sp.) were also the ones with highest antitumor potential, demonstrating antiproliferative activity on HepG-2 cells. Asparagopsis armata-associated bacteria revealed to be a potential source of compounds with antitumor and antibacterial activity.


Subject(s)
Anti-Bacterial Agents/metabolism , Antineoplastic Agents/metabolism , Bacteria/isolation & purification , Bacteria/metabolism , Biological Products/metabolism , Biota , Rhodophyta/microbiology , Bacteria/classification , Bacterial Typing Techniques , Cell Line, Tumor , Cell Survival/drug effects , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Humans , Microbial Sensitivity Tests , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
9.
Virus Res ; 253: 62-67, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29885325

ABSTRACT

The eucalyptus brown looper, Thyrinteina arnobia (Stoll, 1782) (Lepidoptera: Geometridae), is the main lepidopteran defoliator of eucalyptus plantations in Brazil. Outbreaks of this insect pest are common in Brazil and can affect the productivity of planted forests severely. T. arnobia caterpillars from a laboratory colony with viral infection symptoms were analyzed by electron microscopy that revealed polyhedral occlusion bodies (OBs) with several icosahedral virus particles embedded. Analysis of its genetic material showed ten segments of dsRNA, which confirmed this virus as a possible member of the genus Cypovirus. Phylogenetic analysis of the whole genome sequence revealed its close relationship with other isolates of Cypovirus 14 species and according to these results we proposed the name Thyrinteina arnobia cypovirus 14 (TharCPV-14) for this new virus isolate. Further research will be necessary in order to analyze the potential of this virus as a biopesticide.


Subject(s)
Moths/virology , Reoviridae/genetics , Reoviridae/isolation & purification , Animals , Brazil , Eucalyptus/parasitology , Genome, Viral , Genomics , Phylogeny , Reoviridae/classification
10.
Pharmacognosy Res ; 10(1): 24-30, 2018.
Article in English | MEDLINE | ID: mdl-29568183

ABSTRACT

BACKGROUND: The marine environment has shown to be an interesting source of new antitumor agents, representing an important tool in cancer research. OBJECTIVE: The aim of this study was to evaluate the antitumor activities of 12 algae from Peniche coast (Portugal) on an in vitro model of human colorectal cancer (Caco-2 cells). MATERIALS AND METHODS: The antitumor potential was accessed by evaluating Caco-2 cell's viability and proliferation through the 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide and calcein-AM methods. RESULTS: The dichloromethane extracts of Asparagopsis armata and Sphaerococcus coronopifolius induced the highest decrease on cell's viability (1 mg/mL; 24 h), 98.96% ± 0.39% and 98.08% ± 0.89%, respectively, followed by the methanolic extracts of S. coronopifolius (96.47% ± 1.26%) and A. armata (92.68% ± 1.17%). Regarding cell proliferation, the highest decrease of Caco-2 cell's proliferation (1 mg/mL; 24 h) was induced by the dichloromethane extract of A. armata (100% ± 0.48%), S. coronopifolius (99.04 ± 0.51%), and Plocamium cartilagineum (95.05% ± 1.19%). The highest potency was shown by the dichloromethane extract of S. coronopifolius in both, cytotoxicity and antiproliferative tests, with an IC50 of 21.3 and 36.5 µg/mL, respectively. CONCLUSION: The extracts of A. armata and S. coronopifolius are promising sources of new bioactive molecules with application in cancer therapeutics. SUMMARY: Algae from Peniche coast (Portugal) revealed to be a promising source of new bioactive compounds with potential application on cancer therapeutics. Abbreviations Used: MTT: 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide; DMSO: Dimethyl sulfoxide; FBS: Fetal bovine serum; MEM: Minimum Essential Medium; SEM: Standard error of the mean;SP : Sulfated polysaccharides.

11.
Int J Mol Sci ; 18(2)2017 Jan 29.
Article in English | MEDLINE | ID: mdl-28146076

ABSTRACT

Antioxidants play an important role as Reactive Oxygen Species (ROS) chelating agents and, therefore, the screening for potent antioxidants from natural sources as potential protective agents is of great relevance. The main aim of this study was to obtain antioxidant-enriched fractions from the common seaweed Fucus spiralis and evaluate their activity and efficiency in protecting human cells (MCF-7 cells) on an oxidative stress condition induced by H2O2. Five fractions, F1-F5, were obtained by reversed-phase vacuum liquid chromatography. F3, F4 and F5 revealed the highest phlorotannin content, also showing the strongest antioxidant effects. The cell death induced by H2O2 was reduced by all fractions following the potency order F4 > F2 > F3 > F5 > F1. Only fraction F4 completely inhibited the H2O2 effect. To understand the possible mechanisms of action of these fractions, the cellular production of H2O2, the mitochondrial membrane potential and the caspase 9 activity were studied. Fractions F3 and F4 presented the highest reduction on H2O2 cell production. All fractions decreased both caspase-9 activity and cell membrane depolarization (except F1). Taken all together, the edible F. spiralis reveal that they provide protection against oxidative stress induced by H2O2 on the human MCF-7 cellular model, probably acting as upstream blockers of apoptosis.


Subject(s)
Antioxidants/pharmacology , Cytoprotection , Fucus/chemistry , Seaweed/chemistry , Antioxidants/chemistry , Biological Products/chemistry , Biological Products/pharmacology , Caspase 9/metabolism , Chemical Fractionation , Humans , Hydrogen Peroxide/pharmacology , MCF-7 Cells , Membrane Potential, Mitochondrial/drug effects , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Phenols/chemistry , Phenols/pharmacology , Reactive Oxygen Species/metabolism
12.
Food Chem ; 218: 591-599, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-27719954

ABSTRACT

Screening of antioxidant potential of dichloromethane and methanolic extracts of twenty-seven seaweeds from the Peniche coast was performed by: total phenolic contents (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and oxygen radical absorbance capacity (ORAC). Seaweeds revealing the highest antioxidant activity were screened for cytoprotective potential in MCF-7 cells, including the mitochondrial membrane potential analysis and the caspase-9 activity. High correlation was found between TPC of seaweed extracts and their scavenging capacity on DPPH and peroxyl radicals. The highest antioxidant activity was displayed by the methanolic fraction of brown seaweeds belonging to Fucales, however Ulva compressa presented the highest cytoprotective effect by blunting the apoptosis process. These results suggest that high antioxidant activity may not be directly related with high cytoprotective potential. Thus, seaweeds reveal to be a promising source of compounds with potential against oxidative stress.


Subject(s)
Antioxidants/pharmacology , Caspase 9/metabolism , Cytoprotection , Seaweed , Humans , MCF-7 Cells , Membrane Potential, Mitochondrial , Oxidative Stress , Phenols/analysis , Portugal , Principal Component Analysis , Seaweed/chemistry
13.
Springerplus ; 5(1): 1339, 2016.
Article in English | MEDLINE | ID: mdl-27588232

ABSTRACT

BACKGROUND: Cancer represents a serious threat for human health with high social and economic impacts worldwide. Therefore, the development of new anticancer drugs is of most importance. The aim of the present study was to evaluate the antitumor potential of twelve algae from Portugal coast on an in vitro model of human hepatocellular carcinoma (HepG-2 cells). RESULTS: Both extracts of Asparagopsis armata (1000 µg/ml; 24 h) presented high cytotoxicity with 11.22 ± 2.98 and 1.51 ± 0.38 % of HepG-2 live cells, respectively. Sphaerococcus coronopifolius methanolic and dichloromethane extracts (1000 µg/ml) also generated high reduction on HepG-2 viability (14.04 ± 2.62 and 12.84 ± 3.82 % of HepG-2 live cells, respectively). The most potent anti-proliferative activity was induced by dichloromethane extract (1000 µg/ml; 24 h) of Sphaerococcus coronopifolius, Asparagopsis armata and Plocamium cartilagineum with 99.61 ± 0.27, 98.56 ± 0.81 and 85.13 ± 1.04 % of cell's proliferation reduction, respectively. Sphaerococcus coronopifolius dichloromethane extract exhibited the highest potency both on cytotoxicity and anti-proliferation assays with an IC50 of 14.1 and 32.3 µg/ml, respectively. CONCLUSIONS: Sphaerococcus coronopifolius is a promising source of new molecules with possible application on cancer therapeutics.

14.
Mar Drugs ; 13(2): 713-26, 2015 Jan 26.
Article in English | MEDLINE | ID: mdl-25629386

ABSTRACT

Cancer and infectious diseases continue to be a major public health problem, and new drugs are necessary. As marine organisms are well known to provide a wide range of original compounds, the aim of this study was to investigate the bioactivity of the main constituents of the cosmopolitan red alga, Sphaerococcus coronopifolius. The structure of several bromoditerpenes was determined by extensive spectroscopic analysis and comparison with literature data. Five molecules were isolated and characterized which include a new brominated diterpene belonging to the rare dactylomelane family and named sphaerodactylomelol (1), along with four already known sphaerane bromoditerpenes (2-5). Antitumor activity was assessed by cytotoxicity and anti-proliferative assays on an in vitro model of human hepatocellular carcinoma (HepG-2 cells). Antimicrobial activity was evaluated against four pathogenic microorganisms: Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans. Compound 4 exhibited the highest antimicrobial activity against S. aureus (IC50 6.35 µM) and compound 5 the highest anti-proliferative activity on HepG-2 cells (IC50 42.9 µM). The new diterpene, sphaerodactylomelol (1), induced inhibition of cell proliferation (IC50 280 µM) and cytotoxicity (IC50 720 µM) on HepG-2 cells and showed antimicrobial activity against S. aureus (IC50 96.3 µM).


Subject(s)
Anti-Infective Agents/pharmacology , Antineoplastic Agents/pharmacology , Diterpenes/pharmacology , Hydrocarbons, Brominated/pharmacology , Rhodophyta/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Bacteria/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Circular Dichroism , Diterpenes/chemistry , Fungi/drug effects , Humans , Hydrocarbons, Brominated/chemistry , Spectrophotometry, Ultraviolet
15.
World J Microbiol Biotechnol ; 31(3): 445-51, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25588525

ABSTRACT

Methanol, n-hexane and dichloromethane extracts of twelve marine macro-algae (Rhodophyta, Chlorophyta and Heterokontophyta divisions) from Peniche coast (Portugal) were evaluated for their antibacterial and antifungal activity. The antibacterial activity was evaluated by disc diffusion method against Bacillus subtilis (gram positive bacteria) and Escherichia coli (gram negative bacteria). Saccharomyces cerevisiae was used as a model for the antifungal activity by evaluating the growth inhibitory activity of the extracts. The high antibacterial activity was obtained by the Asparagopsis armata methanolic extract (10 mm-0.1 mg/disc), followed by the Sphaerococcus coronopifolius n-hexane extract (8 mm-0.1 mg/disc), and the Asparagopsis armata dichloromethane extract (12 mm-0.3 mg/disc) against Bacillus subtilis. There were no positive results against Escherichia coli. Sphaerococcus coronopifolius revealed high antifungal potential for n-hexane (IC50 = 40.2 µg/ml), dichloromethane (IC50 = 78.9 µg/ml) and methanolic (IC50 = 55.18 µg/ml) extracts against Saccharomyces cerevisiae growth. The antifungal potency of the Sphaerococcus coronopifolius extracts was similar with the standard amphotericin B. Asparagopsis armata and Sphaerococcus coronopifolius reveal to be interesting sources of natural compounds with antimicrobial properties.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Antifungal Agents/isolation & purification , Rhodophyta/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Bacillus subtilis/drug effects , Cell Extracts/isolation & purification , Cell Extracts/pharmacology , Escherichia coli/drug effects , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Portugal , Rhodophyta/metabolism , Saccharomyces cerevisiae/drug effects
16.
Mar Drugs ; 12(3): 1676-89, 2014 Mar 24.
Article in English | MEDLINE | ID: mdl-24663118

ABSTRACT

Surface-associated marine bacteria are an interesting source of new secondary metabolites. The aim of this study was the isolation and identification of epiphytic bacteria from the marine brown alga, Bifurcaria bifurcata, and the evaluation of the antioxidant and antimicrobial activity of bacteria extracts. The identification of epiphytic bacteria was determined by 16S rRNA gene sequencing. Bacteria extracts were obtained with methanol and dichloromethane (1:1) extraction. The antioxidant activity of extracts was performed by quantification of total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and oxygen radical absorbance capacity (ORAC). Antimicrobial activities were evaluated against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Salmonella enteritidis, Staphylococcus aureus, Saccharomyces cerevisiae and Candida albicans. A total of 39 Bifurcaria bifurcata-associated bacteria were isolated and 33 were identified as Vibrio sp. (48.72%), Alteromonas sp. (12.82%), Shewanella sp. (12.26%), Serratia sp. (2.56%), Citricoccus sp. (2.56%), Cellulophaga sp. (2.56%), Ruegeria sp. (2.56%) and Staphylococcus sp. (2.56%). Six (15.38%) of the 39 bacteria Bifurcaria bifurcata-associated bacteria presented less than a 90% Basic Local Alignment Search Tool (BLAST) match, and some of those could be new. The highest antioxidant activity and antimicrobial activity (against B. subtilis) was exhibited by strain 16 (Shewanella sp.). Several strains also presented high antimicrobial activity against S. aureus, mainly belonging to Alteromonas sp. and Vibrio sp. There were no positive results against fungi and Gram-negative bacteria. Bifurcaria bifurcata epiphytic bacteria were revealed to be excellent sources of natural antioxidant and antimicrobial compounds.


Subject(s)
Anti-Infective Agents/chemistry , Antioxidants/chemistry , Bacteria/chemistry , Phaeophyceae/microbiology , Anti-Infective Agents/isolation & purification , Antioxidants/isolation & purification , Bacillus subtilis/drug effects , Bacteria/isolation & purification , Biodiversity , Biphenyl Compounds/chemistry , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Free Radicals/chemistry , Microbial Sensitivity Tests , Phenols/chemistry , Picrates/chemistry , Seawater/microbiology , Staphylococcus aureus/drug effects , Water Microbiology
17.
N Biotechnol ; 30(6): 839-50, 2013 Sep 25.
Article in English | MEDLINE | ID: mdl-23563183

ABSTRACT

The marine environment offers both economic and scientific potential which are relatively untapped from a biotechnological point of view. These environments whilst harsh are ironically fragile and dependent on a harmonious life form balance. Exploitation of natural resources by exhaustive wild harvesting has obvious negative environmental consequences. From a European industry perspective marine organisms are a largely underutilised resource. This is not due to lack of interest but due to a lack of choice the industry faces for cost competitive, sustainable and environmentally conscientious product alternatives. Knowledge of the biotechnological potential of marine organisms together with the development of sustainable systems for their cultivation, processing and utilisation are essential. In 2010, the European Commission recognised this need and funded a collaborative RTD/SME project under the Framework 7-Knowledge Based Bio-Economy (KBBE) Theme 2 Programme 'Sustainable culture of marine microorganisms, algae and/or invertebrates for high value added products'. The scope of that project entitled 'Sustainable Production of Biologically Active Molecules of Marine Based Origin' (BAMMBO) is outlined. Although the Union is a global leader in many technologies, it faces increasing competition from traditional rivals and emerging economies alike and must therefore improve its innovation performance. For this reason innovation is placed at the heart of a European Horizon 2020 Strategy wherein the challenge is to connect economic performance to eco performance. This article provides a synopsis of the research activities of the BAMMBO project as they fit within the wider scope of sustainable environmentally conscientious marine resource exploitation for high-value biomolecules.


Subject(s)
Aquatic Organisms , Biotechnology , Biotechnology/economics , Biotechnology/methods , Biotechnology/organization & administration , Biotechnology/trends , Europe
SELECTION OF CITATIONS
SEARCH DETAIL