Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 363
Filter
1.
Sports Med Open ; 10(1): 59, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775922

ABSTRACT

BACKGROUND: Beam walking is a new test to estimate dynamic balance. We characterized dynamic balance measured by the distance walked on beams of different widths in five age groups of healthy adults (20, 30, 40, 50, 60 years) and individuals with neurological conditions (i.e., Parkinson, multiple sclerosis, stroke, age: 66.9 years) and determined if beam walking distance predicted prospective falls over 12 months. METHODS: Individuals with (n = 97) and without neurological conditions (n = 99, healthy adults, age 20-60) participated in this prospective longitudinal study. Falls analyses over 12 months were conducted. The summed distance walked under single (walking only) and dual-task conditions (walking and serial subtraction by 7 between 300 to 900) on three beams (4, 8, and 12-cm wide) was used in the analyses. Additional functional tests comprised grip strength and the Short Physical Performance Battery. RESULTS: Beam walking distance was unaffected on the 12-cm-wide beam in the healthy adult groups. The distance walked on the 8-cm-wide beam decreased by 0.34 m in the 20-year-old group. This reduction was ~ 3 × greater, 1.1 m, in the 60-year-old group. In patients, beam walking distances decreased sharply by 0.8 m on the 8 versus 12 cm beam and by additional 1.6 m on the 4 versus 8 cm beam. Beam walking distance under single and dual-task conditions was linearly but weakly associated with age (R2 = 0.21 for single task, R2 = 0.27 for dual-task). Age, disease, and beam width affected distance walked on the beam. Beam walking distance predicted future falls in the combined population of healthy adults and patients with neurological conditions. Based on receiver operating characteristic curve analyses using data from the entire study population, walking ~ 8.0 of the 12 m maximum on low-lying beams predicted future fallers with reasonable accuracy. CONCLUSION: Balance beam walking is a new but worthwhile measure of dynamic balance to predict falls in the combined population of healthy adults and patients with neurological conditions. Future studies are needed to evaluate the predictive capability of beam walking separately in more homogenous populations. Clinical Trial Registration Number NCT03532984.

2.
Sports Med Open ; 10(1): 3, 2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38185708

ABSTRACT

BACKGROUND: Despite the increasing number of research studies examining the effects of age on the control of posture, the number of annual fall-related injuries and deaths continues to increase. A better understanding of how old age affects the neural mechanisms of postural control and how countermeasures such as balance training could improve the neural control of posture to reduce falls in older individuals is therefore necessary. The aim of this review is to determine the effects of age on the neural correlates of balance skill learning measured during static (standing) and dynamic (walking) balance tasks in healthy individuals. METHODS: We determined the effects of acute (1-3 sessions) and chronic (> 3 sessions) balance skill training on balance in the trained and in untrained, transfer balance tasks through a systematic review and quantified these effects by robust variance estimation meta-analysis in combination with meta-regression. We systematically searched PubMed, Web of Science, and Cochrane databases. Balance performance and neural plasticity outcomes were extracted and included in the systematic synthesis and meta-analysis. RESULTS: Forty-two studies (n = 622 young, n = 699 older individuals) were included in the systematic synthesis. Seventeen studies with 508 in-analysis participants were eligible for a meta-analysis. The overall analysis revealed that acute and chronic balance training had a large effect on the neural correlates of balance skill learning in the two age groups combined (g = 0.79, p < 0.01). Both age groups similarly improved balance skill performance in 1-3 training sessions and showed little further improvements with additional sessions. Improvements in balance performance mainly occurred in the trained and less so in the non-trained (i.e., transfer) balance tasks. The systematic synthesis and meta-analysis suggested little correspondence between improved balance skills and changes in spinal, cortical, and corticospinal excitability measures in the two age groups and between the time courses of changes in balance skills and neural correlates. CONCLUSIONS: Balance skill learning and the accompanying neural adaptations occur rapidly and independently of age with little to no training dose-dependence or correspondence between behavioral and neural adaptations. Of the five types of neural correlates examined, changes in only spinal excitability seemed to differ between age groups. However, age or training dose in terms of duration did not moderate the effects of balance training on the changes in any of the neural correlates. The behavioral and neural mechanisms of strong task-specificity and the time course of skill retention remain unclear and require further studies in young and older individuals. REGISTRATION: PROSPERO registration number: CRD42022349573.

3.
BMC Cancer ; 24(1): 82, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225589

ABSTRACT

BACKGROUND: Glioblastoma is the most common and most aggressive malignant primary brain tumor in adults. Glioblastoma cells synthesize and secrete large quantities of the excitatory neurotransmitter glutamate, driving epilepsy, neuronal death, tumor growth and invasion. Moreover, neuronal networks interconnect with glioblastoma cell networks through glutamatergic neuroglial synapses, activation of which induces oncogenic calcium oscillations that are propagated via gap junctions between tumor cells. The primary objective of this study is to explore the efficacy of brain-penetrating anti-glutamatergic drugs to standard chemoradiotherapy in patients with glioblastoma. METHODS/DESIGN: GLUGLIO is a 1:1 randomized phase Ib/II, parallel-group, open-label, multicenter trial of gabapentin, sulfasalazine, memantine and chemoradiotherapy (Arm A) versus chemoradiotherapy alone (Arm B) in patients with newly diagnosed glioblastoma. Planned accrual is 120 patients. The primary endpoint is progression-free survival at 6 months. Secondary endpoints include overall and seizure-free survival, quality of life of patients and caregivers, symptom burden and cognitive functioning. Glutamate levels will be assessed longitudinally by magnetic resonance spectroscopy. Other outcomes of interest include imaging response rate, neuronal hyperexcitability determined by longitudinal electroencephalography, Karnofsky performance status as a global measure of overall performance, anticonvulsant drug use and steroid use. Tumor tissue and blood will be collected for translational research. Subgroup survival analyses by baseline parameters include segregation by age, extent of resection, Karnofsky performance status, O6-methylguanine DNA methyltransferase (MGMT) promotor methylation status, steroid intake, presence or absence of seizures, tumor volume and glutamate levels determined by MR spectroscopy. The trial is currently recruiting in seven centers in Switzerland. TRIAL REGISTRATION: NCT05664464. Registered 23 December 2022.


Subject(s)
Brain Neoplasms , Glioblastoma , Adult , Humans , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Chemoradiotherapy , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Drug Repositioning , Glioblastoma/drug therapy , Glioblastoma/genetics , Glutamates , Multicenter Studies as Topic , Quality of Life , Randomized Controlled Trials as Topic , Steroids/therapeutic use
4.
Geroscience ; 46(2): 2755-2764, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37943486

ABSTRACT

We conducted a meta-analysis of randomized controlled trials investigating the effects of aerobic exercise training (AET) lasting ≥ 4 weeks on hippocampal volume and cardiorespiratory fitness (CRF) in cognitively unimpaired, healthy older individuals. Random-effects robust variance estimation models were used to test differences between AET and controls, while meta-regressions tested associations between CRF and hippocampal volume changes. We included eight studies (N = 554) delivering fully supervised AET for 3 to 12 months (M = 7.8, SD = 4.5) with an average AET volume of 129.85 min/week (SD = 45.5) at moderate-to-vigorous intensity. There were no significant effects of AET on hippocampal volume (SMD = 0.10, 95% CI - 0.01 to 0.21, p = 0.073), but AET moderately improved CRF (SMD = 0.30, 95% CI 0.12 to 0.48, p = 0.005). Improvement in CRF was not associated with changes in hippocampal volume (bSE = 0.05, SE = 0.51, p = 0.923). From the limited number of studies, AET does not seem to impact hippocampal volume in cognitively unimpaired, healthy older individuals. Notable methodological limitations across investigations might mask the lack of effects.


Subject(s)
Cardiorespiratory Fitness , Exercise , Humans , Randomized Controlled Trials as Topic , Health Status , Hippocampus/diagnostic imaging
5.
J Neurol Sci ; 456: 122841, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38101161

ABSTRACT

Nephropathic cystinosis is a rare autosomal recessive storage disorder caused by CTNS gene mutations, leading to autophagy-lysosomal pathway impairment and cystine crystals accumulation. Neurologic involvement is highly variable and includes both neurodevelopmental and neurodegenerative disturbances, as well as focal neurologic deficits. By presenting longitudinal data of a 28-year-old patient with a large infratentorial lesion, we summarized the pathology, clinical and imaging features of neurological involvement in cystinosis patients. Brain damage in form of cystinosis-related cerebral lesions occurs in advanced disease phases and is characterized by the accumulation of cystine crystals, subsequent inflammation with vasculitis-like features, necrosis, and calcification. Epilepsy is a frequent comorbidity in affected individuals. Steroids might play a role in the symptomatic treatment of "stroke-like" episodes due to edematous-inflammatory lesions, but probably do not change the overall prognosis. Lifelong compliance to depleting therapy with cysteamine still represents the main therapeutic option. However, consequences of CTNS gene defects are not restricted to cystine accumulation. New evidence of four-repeat (4R-) Tau immunoreactivity suggests concurrent progressive neurodegeneration in cystinosis patients, highlighting the need of innovative therapeutic strategies, and shedding light on the crosstalk between proteinopathies and autophagy-lysosomal system defects. Eventually, emerging easily accessible biomarkers such as serum neurofilament light chains (NfL) might detect subclinical neurologic involvement in cystinosis patients.


Subject(s)
Amino Acid Transport Systems, Neutral , Cystinosis , Humans , Adult , Cystinosis/complications , Cystinosis/genetics , Cystinosis/drug therapy , Cystine/metabolism , Cystine/therapeutic use , Amino Acid Transport Systems, Neutral/genetics , Amino Acid Transport Systems, Neutral/metabolism , Amino Acid Transport Systems, Neutral/therapeutic use , Cysteamine/therapeutic use , Inflammation/drug therapy , Brain/diagnostic imaging , Brain/metabolism
6.
PLoS One ; 18(12): e0294524, 2023.
Article in English | MEDLINE | ID: mdl-38064463

ABSTRACT

Low-intensity endurance exercise with blood flow restriction (KAATSU) is under consideration for use in cardiac rehabilitation. However, the physiological responses to such exercise have not yet been fully characterized. In an initial effort in healthy males (n = 11, age: 26.3±4.6 y), we compared the physiological responses to low-intensity endurance exercise with and without a thigh KAATSU. Participants performed maximal graded exercise testing using a cycle ergometer with or without KAATSU. We examined responses to cycling exercise at ventilatory threshold (VT) in heart rate (HR), oxygen consumption (VO2), dyspnea, ratings of perceived exertion (RPE), blood pressure (BP), and rectus femoris activation. Participants reached VT at a lower mechanical load, HR, VO2, dyspnea, and double product (HR×systolic BP) with KAATSU vs. no-KAATSU. At VT, RPE, and rectus femoris activity did not differ between the two conditions. These results suggest that KAATSU reduced exercise intensity to reach VT and the physiological responses to exercise at VT without changes in knee extensor muscle activation. Results from this pilot study in healthy males suggest that KAATSU aerobic exercise at VT intensity has the potential to be an effective and low-burden adjuvant to cycling in cardiac rehabilitation.


Subject(s)
Exercise , Oxygen Consumption , Male , Humans , Young Adult , Adult , Pilot Projects , Exercise/physiology , Oxygen Consumption/physiology , Muscle, Skeletal/physiology , Heart Rate/physiology , Dyspnea , Physical Exertion/physiology
7.
Sci Rep ; 13(1): 21934, 2023 12 11.
Article in English | MEDLINE | ID: mdl-38082027

ABSTRACT

Previous research has not demonstrated secondary degeneration of the spinal cord (SpC) motoneurons after cerebral infarct. The aim of the present study is to investigate the involvement of the anterior horn cells (AHC) in the early post-stroke period using histomorphological and immunohistochemical methods. Post-mortem analysis of the 6th cervical segment was performed in 7 patients who had total MCA stroke within 1 month before death. Nissl-stained sections were used for morphometry, while CD68 and synaptophysin (SYP) immunohistochemistry to monitor microglial activation and synaptic changes in the anterior horn (AH), respectively. Contralateral to the cerebral lesion (contralesional side), cells were smaller after 3 days and larger after 1 week of stroke, especially regarding the large alpha motoneurons. CD68 density increased mainly on the contralesional Rexed's IX lamina of the SpC. SYP coverage of the large motoneurons was reduced on the contralesional side. Early microglial activation in the AH and electrophysiological signs has suggested the possibility of impairment of anterior horn cells (AHC-s). Our study supported that early microglial activation in the contralesional side of the SpC may primarily affect the area corresponding to the location of large motoneurons, and is accompanied by a transient shrinkage followed by increase in size of the large AHC-s with a reduction of their synaptic coverage. After MCA stroke, early involvement of the SpC motoneurons may be suspected by their morphological and synaptic changes and by the pattern of microglial activation.


Subject(s)
Spinal Cord , Stroke , Humans , Spinal Cord/pathology , Motor Neurons/physiology , Anterior Horn Cells/pathology , Stroke/pathology , Wallerian Degeneration/pathology
8.
Brain Commun ; 5(6): fcad307, 2023.
Article in English | MEDLINE | ID: mdl-38025281

ABSTRACT

Magnetic resonance imaging (MRI) has limitations in identifying underlying tissue pathology, which is relevant for neurological diseases such as multiple sclerosis, stroke or brain tumours. However, there are no standardized methods for correlating MRI features with histopathology. Thus, here we aimed to develop and validate a tool that can facilitate the correlation of brain MRI features to corresponding histopathology. For this, we designed the Brainbox, a waterproof and MRI-compatible 3D printed container with an integrated 3D coordinate system. We used the Brainbox to acquire post-mortem ex vivo MRI of eight human brains, fresh and formalin-fixed, and correlated focal imaging features to histopathology using the built-in 3D coordinate system. With its built-in 3D coordinate system, the Brainbox allowed correlation of MRI features to corresponding tissue substrates. The Brainbox was used to correlate different MR image features of interest to the respective tissue substrate, including normal anatomical structures such as the hippocampus or perivascular spaces, as well as a lacunar stroke. Brain volume decreased upon fixation by 7% (P = 0.01). The Brainbox enabled degassing of specimens before scanning, reducing susceptibility artefacts and minimizing bulk motion during scanning. In conclusion, our proof-of-principle experiments demonstrate the usability of the Brainbox, which can contribute to improving the specificity of MRI and the standardization of the correlation between post-mortem ex vivo human brain MRI and histopathology. Brainboxes are available upon request from our institution.

10.
Neuroscience ; 527: 11-21, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37437799

ABSTRACT

Age modifies walking balance and neuromuscular control. Cognitive and postural constraints can increase walking balance difficulty and magnify age-related differences. However, how such challenges affect neuromuscular control remains unknown. We determined the effects of age, cognitive task, and arm position on neuromuscular control of walking balance. Young (YA) and older adults (OA) walked on a 6-cm wide beam with and without arm crossing and a cognitive task. Walking balance was quantified by the distance walked on the beam. We also computed step speed, margin of stability, and cognitive errors. Neuromuscular control was determined through muscle synergies extracted from 13 right leg and trunk muscles. We analyzed neuromuscular complexity by the number of synergies and the variance accounted for by the first synergy, coactivity by the number of significantly active muscles in each synergy, and efficiency by the sum of the activation of each significantly active muscle in each synergy. OA vs. YA walked a 14% shorter distance, made 12 times more cognitive errors, and showed less complex and efficient neuromuscular control. Cognitive task reduced walking balance mainly in OA. Decreases in step speed and margin of stability, along with increased muscle synergy coactivity and reduced efficiency were observed in both age groups. Arm-crossing also reduced walking balance mostly in OA, but step speed decreased mainly in YA, in whom the margin of stability increased. Arm-crossing reduced the complexity of synergies. Age, cognitive task, and arm position affect differently muscle synergy recruitment but have similar effects on walking balance.


Subject(s)
Arm , Postural Balance , Postural Balance/physiology , Walking/physiology , Muscle, Skeletal/physiology , Cognition , Gait/physiology
11.
Sports Med Open ; 9(1): 41, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37278947

ABSTRACT

BACKGROUND: The quantity and quality of skeletal muscle are important determinants of daily function and metabolic health. Various forms of physical exercise can improve muscle function, but this effect can be inconsistent and has not been systematically examined across the health-neurological disease continuum. The purpose of this systematic scoping review with meta-analyses was to determine the effects and potential moderators of exercise training on morphological and neuromuscular muscle quality (MMQ, NMQ) in healthy older individuals. In addition and in the form of a scoping review, we examined the effects of exercise training on NMQ and MMQ in individuals with neurological conditions. METHODS: A systematic literature search was performed in the electronic databases Medline, Embase, and Web of Science. Randomized controlled trials were included that examined the effects of exercise training on muscle quality (MQ) in older individuals with and without neurological conditions. Risk of bias and study quality were assessed (Cochrane Risk of Bias Tool 2.0). We performed random-effects models using robust variance estimation and tested moderators using the approximate Hotelling-Zhang test. RESULTS: Thirty studies (n = 1494, 34% females) in healthy older individuals and no studies in individuals with neurological conditions were eligible for inclusion. Exercise training had small effects on MMQ (g = 0.21, 95% confidence interval [CI]: 0.03-0.40, p = 0.029). Heterogeneity was low (median I2 = 16%). Training and demographic variables did not moderate the effects of exercise on MMQ. There was no association between changes in MMQ and changes in functional outcomes. Exercise training improved NMQ (g = 0.68, 95% CI 0.35-1.01, p < 0.000) across all studies, in particular in higher-functioning older individuals (g = 0.72, 95% CI 0.38-1.06, p < 0.001), in lower extremity muscles (g = 0.74, 95% CI 0.35-1.13, p = 0.001), and after resistance training (g = 0.91; 95% CI 0.42-1.41, p = 0.001). Heterogeneity was very high (median I2 = 79%). Of the training and demographic variables, only resistance training moderated the exercise-effects on NMQ. High- versus low-intensity exercise moderated the exercise-effects on NMQ, but these effects were considered unreliable due to a low number of studies at high intensity. There was no association between changes in NMQ and changes in functional outcomes. CONCLUSION: Exercise training has small effects on MMQ and medium-large effects on NMQ in healthy older individuals. There was no association between improvements in MQ and increases in muscle strength, mobility, and balance. Information on dose-response relations following training is currently lacking. There is a critical gap in muscle quality data for older individuals with lower function and neurological conditions after exercise training. Health practitioners should use resistance training to improve muscle function in older individuals. Well-designed studies are needed to examine the relevance of exercise training-induced changes in MQ in daily function in older individuals, especially to those with lower function and neurological conditions.

12.
Scand J Med Sci Sports ; 33(8): 1360-1372, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36920047

ABSTRACT

The aim of the present cross-sectional study was to determine if chronic rock climbing and climbing-specific resistance training (RT) would modify the reticulospinal tract (RST) efficacy. Sixteen healthy, elite level climbers (CL; n = 16, 5 F; 29.8 ± 6.7 years) with 12 ± 7 years of climbing and climbing-specific RT experience and 15 healthy recreationally active participants (CON; n = 15, 4 F; 24.6 ± 5.9 years), volunteered for the study. We quantified RST efficacy by comparing the effects of a startle stimulus over reaction time (Rtime ) and measured rate of force development (RFD) and surface electromyography (sEMG) in representative muscles during powerful hand grip contractions. Both groups performed two Rtime tasks while performing rapid, powerful gripping with the right hand (Task 1) or during 3-s-long maximal voluntary right hand grip contractions in response to an imperative visual signal alone (V), or combined with a auditory-non startle stimulus (A) or/and startling auditory stimulus (S). We also tested the reproducibility of these responses on two separate days in CON. Intersession reliability ranged from 0.34 to 0.96 for all variables. The CL versus CON was 37% stronger (p = 0.003). The S stimulus decreased Rtime and increased RFD and sEMG in both groups during both tasks (all p < 0.001). Rtime was similar between groups in all conditions. However, CL had a greater RFD from 50 to 100 ms compared with CON only after the S stimulus in both tasks (p < 0.05, d = 0.85-0.96). The data tentatively suggest that chronic rock climbing and climbing-specific RT might improve RST efficacy, by increasing RST input to the α-motoneurons.


Subject(s)
Hand Strength , Mountaineering , Humans , Reproducibility of Results , Hand Strength/physiology , Muscle, Skeletal/physiology , Fingers/physiology , Cross-Sectional Studies , Mountaineering/physiology
13.
Hum Mov Sci ; 89: 103075, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36940500

ABSTRACT

INTRODUCTION: Analysing gait in controlled conditions that resemble daily life walking could overcome the limitations associated with gait analysis in uncontrolled real-world conditions. Such analyses could potentially aid the identification of a walking condition that magnifies age-differences in gait. Therefore, the aim of the current study was to determine the effects of age and walking conditions on gait performance. METHODS: Trunk accelerations of young (n = 27, age: 21.6) and older adults (n = 26, age: 68.9) were recorded for 3 min in four conditions: walking up and down a university hallway on a track of 10 m; walking on a specified path, including turns, in a university hallway; walking outside on a specified path on a pavement including turns; and walking on a treadmill. Factor analysis was used to reduce 27 computed gait measures to five independent gait domains. A multivariate analysis of variance was used to examine the effects of age and walking condition on these gait domains. RESULTS: Factor analysis yielded 5 gait domains: variability, pace, stability, time & frequency, complexity, explaining 64% of the variance in 27 gait outcomes. Walking conditions affected all gait domains (p < 0.01) but age only affected the time & frequency domain (p < 0.05). Age and walking conditions differently affected the domains variability, stability, time & frequency. The largest age-differences occurred mainly during straight walking in a hallway (variability: 31% higher in older adults), or during treadmill walking (stability: 224% higher, time&frequency: 120% lower in older adults). CONCLUSION: Walking conditions affect all domains of gait independent of age. Treadmill walking and walking on a straight path in a hallway, were the most constrained walking conditions in terms of limited possibilities to adjust step characteristics. The age by condition interaction suggests that for the gait domains variability, stability, and time & frequency, the most constrained walking conditions seem to magnify the age-differences in gait.


Subject(s)
Gait , Walking , Humans , Aged , Young Adult , Adult , Gait Analysis , Multivariate Analysis , Exercise Test , Walking Speed
14.
Games Health J ; 12(4): 302-309, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36944151

ABSTRACT

Objective: This study examined the effects of motor-cognitive dual-task exergaming standing balance training on healthy older adults' static, dynamic, and walking balance. Methods: Twenty-four adults older than 70 years (control group: n = 9, males = 6, balance training group: n = 15, males = 8) completed the experiment. Dual-tasking standing balance training comprised the accurate control of a ping-pong ball on a tray held with both hands, while standing on one leg (analog training) and three modules of Wii Fit™ exergaming (digital training). The duration of balance training was ∼15 minutes per day, 2 days per week for 8 weeks, in total 16 sessions. We measured one-leg standing time, functional reach distance, walking balance evaluated by the distance walked on a narrow beam (4-cm long, 4-cm wide, and 2-cm high) with single and dual tasking, habitual and maximal walking speed, and muscle strength of the hip extensor, hip abductor, hip adductor, knee extensor, and plantarflexor muscle groups in the right leg at baseline and after 8 weeks. Results: Control group decreased, but balance training group increased one-leg standing time. Only the balance training group improved functional reach distance and hip and knee extensor strength. There was no change in walking speed and walking balance in either group. In the balance training group, changes in maximal speed correlated with changes in dual-tasking walking balance and changes in one-leg standing time correlated with changes in single-tasking walking balance. Conclusion: These results suggest that 16 sessions of motor-cognitive dual-task standing exergaming balance training substantially improved healthy older adults' static and dynamic balance and leg muscle strength but failed to improve walking speed and walking balance. Balance exercises specific to walking balance need to be included in balance training to improve walking balance.


Subject(s)
Exergaming , Walking , Male , Humans , Aged , Walking/physiology , Exercise Therapy/methods , Exercise , Cognition , Postural Balance/physiology
15.
Ideggyogy Sz ; 76(1-2): 58-62, 2023 01 30.
Article in English | MEDLINE | ID: mdl-36892294

ABSTRACT

IgG4-related (IgG4-RD) disease is a relatively newly identified, chronic autoimmune disorder that can affect any organ system. The disease is relatively rare. It has mostly systemic presentation, however it can also appear in isolated form in one single organ. In our report, we demonstrate an elderly male patient's case with IgG4-RD presented in the form of diffuse meningeal inflammation and hypertrophic pachymeningitis with one-sided cranial nerve and intraventricular involvement.


Subject(s)
Immunoglobulin G4-Related Disease , Meningitis , Humans , Male , Aged , Immunoglobulin G4-Related Disease/complications , Immunoglobulin G4-Related Disease/diagnosis , Immunoglobulin G , Hypertrophy , Inflammation , Cranial Nerves , Magnetic Resonance Imaging
16.
J Strength Cond Res ; 37(7): 1375-1381, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36728004

ABSTRACT

ABSTRACT: Zecchin, A, Puggina, EF, Hortobágyi, T, and Granacher, U. Association between foundation strength and weightlifting exercises in highly trained weightlifters: support for a general strength component. J Strength Cond Res 37(7): 1375-1381, 2023-In addition to specific weightlifting exercises (i.e., clean and jerk and snatch), foundation strength exercises (i.e., overhead press, front squat, and deadlift) constitute an integral part of the weightlifters' training regime. The unexamined concept behind this training plan is that foundation strength exercises are associated with clean and jerk and snatch performance, implying the existence of a general strength component. We thus determined the relationship between performance in foundation strength exercises (overhead press, front squat, and deadlift) and weightlifting exercises (clean and jerk and snatch) in weightlifters. Well-trained weightlifters ( N = 19, age: 26.8 ± 4.4 years; body mass index: 27.6 ± 2.3 kg·m -2 ; and training history: 4.6 ± 0.8 years) performed 1 repetition maximum tests (1RM) in foundation strength and weightlifting exercises, over 14 days, in a randomized order. We observed significant correlations in 1RM performance between the overhead press and snatch ( r = 0.69), front squat and snatch ( r = 0.73), overhead press and clean and jerk ( r = 0.67), and front squat and clean and jerk ( r = 0.72, all r values: p < 0.01). No significant correlations were found for 1RM performance between the snatch and deadlift or between the clean and jerk and deadlift ( r- range: 0.20-0.58; p > 0.05). Stepwise linear regression revealed that 1RM performance in the overhead press and front squat explained 62% of the variance in snatch 1RM performance ( F = 5.51; p < 0.04). Overhead press and front squat 1RM performance explained 59% of the variance in the clean and jerk 1RM performance ( F = 5.14; p < 0.04). Our results demonstrate the existence of a general strength component between selected foundation strength exercises and weightlifting performance. However, the use of the front squat and overhead press to increase 1RM performance in weightlifting exercises needs to be determined in future research using a different methodological approach (i.e., longitudinal protocols), given that the observed correlations do not necessarily imply causation.


Subject(s)
Exercise , Resistance Training , Humans , Young Adult , Adult , Weight Lifting , Exercise Therapy , Posture , Linear Models , Muscle Strength , Resistance Training/methods
17.
Med Sci Sports Exerc ; 55(4): 607-613, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36730024

ABSTRACT

PURPOSE: This study aimed to determine the effects of a 2-yr-long maintenance training (MT) exergaming and detraining (DT) on clinical-motor symptoms in subacute ischemic patients with stroke (PwST). The hypothesis was that MT motor rehabilitation program would further increase the effects of the initial rehabilitation. METHODS: After high-intensity and high-frequency exergaming twice or once a day, 5 times per week for 5 wk (EX2: 50 sessions; EX1: 25 sessions, results reported previously), 558 PwST were randomized to EX2-MT, EX2-DT, EX1-MT, and EX1-DT. MT exergaming consisted of once a day, 3 times per week for 2 yr, and DT did not train. Outcomes were measured at 6, 12, 18, and 24 months. The data were analyzed using longitudinal linear mixed-effects models and general linear hypotheses testing. RESULTS: Modified Rankin Score (primary outcome), body mass, Mini-Mental State Examination score, Beck Depression Inventory, measures of quality of life, Berg Balance Scale, 6-min walk test, and four measures of center of pressure path tended to retain the initial rehabilitation-induced gains in the MT patients in selected outcomes (especially walking capacity). The scores tended to mildly worsen after DT, partially supporting the hypothesis. CONCLUSIONS: MT successfully maintained, but only in selected variables did it further increase the initial exergaming rehabilitation-induced robust improvements. DT modestly reduced the initial exergaming rehabilitation-induced improvements. MT programs might be needed after initial stroke rehabilitation to reduce subsequent losses of quality of life and further improve clinical-motor symptoms.


Subject(s)
Ischemic Stroke , Stroke Rehabilitation , Stroke , Humans , Quality of Life , Stroke Rehabilitation/methods , Exercise Therapy/methods , Treatment Outcome
18.
Exp Gerontol ; 173: 112102, 2023 03.
Article in English | MEDLINE | ID: mdl-36693530

ABSTRACT

Changes in old age that contribute to the complex issue of an increased metabolic cost of walking (mass-specific energy cost per unit distance traveled) in older adults appear to center at least in part on changes in gait biomechanics. However, age-related changes in energy metabolism, neuromuscular function and connective tissue properties also likely contribute to this problem, of which the consequences are poor mobility and increased risk of inactivity-related disease and disability. The U.S. National Institute on Aging convened a workshop in September 2021 with an interdisciplinary group of scientists to address the gaps in research related to the mechanisms and consequences of changes in mobility in old age. The goal of the workshop was to identify promising ways to move the field forward toward improving gait performance, decreasing energy cost, and enhancing mobility for older adults. This report summarizes the workshop and brings multidisciplinary insight into the known and potential causes and consequences of age-related changes in gait biomechanics. We highlight how gait mechanics and energy cost change with aging, the potential neuromuscular mechanisms and role of connective tissue in these changes, and cutting-edge interventions and technologies that may be used to measure and improve gait and mobility in older adults. Key gaps in the literature that warrant targeted research in the future are identified and discussed.


Subject(s)
National Institute on Aging (U.S.) , Walking , United States , Biomechanical Phenomena , Gait
19.
J Strength Cond Res ; 37(6): 1264-1270, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-34027911

ABSTRACT

ABSTRACT: Gäbler, M, Prieske, O, Elferink-Gemser, MT, Hortobágyi, T, Warnke, T, and Granacher, U. Measures of physical fitness improve prediction of kayak and canoe sprint performance in young kayakers and canoeists. J Strength Cond Res 37(6): 1264-1270, 2023-Markers of talent selection and predictors of performance in canoe and kayak sprint are not yet well defined. We aimed to determine the combination of variables (i.e., demographic, anthropometric, and physical fitness) that most accurately predicts sprint performance (i.e., 500- and 2000-m race time) in semielite, young kayakers and canoeists ( n = 39, age 13 year, 10F). The level of significance was set at p < 0.05. Linear regression analyses identified boat type (i.e., kayak or canoe), skeletal muscle mass, and average power during a 2-minute bench pull test, normalized to body mass, as predictors of 2000-m race time (R 22000 m = 0.69, Akaike information criterion [AIC] = 425) and together with vertical jump height, as predictors of 500-m race time (R 2500 m = 0.87, AIC = 255). This was an improvement over models containing solely demographic variables (R 2500 m = 0.66, AIC = 293; R 22000 m = 0.44, AIC = 446) and over models containing demographic and anthropometric variables (R 2500m = 0.79, AIC = 277; R 22000 m = 0.56, AIC = 437). Race time showed the strongest semipartial correlations with the 2-minute bench pull test (0.7 ≤ r ≤ 0.9). Adding physical fitness data (i.e., 2-minute bench pull test) to demographic and anthropometric data improves the prediction accuracy of race times in young kayak and canoe athletes. The characteristics of physical fitness tests should resemble as much as possible the biomechanical (e.g., prime movers) and metabolic (e.g., duration) demands of the sport.


Subject(s)
Athletic Performance , Water Sports , Humans , Adolescent , Athletic Performance/physiology , Ships , Physical Fitness/physiology , Water Sports/physiology , Athletes
SELECTION OF CITATIONS
SEARCH DETAIL
...