Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Scientifica (Cairo) ; 2022: 6059880, 2022.
Article in English | MEDLINE | ID: mdl-36247725

ABSTRACT

Enzyme-coupled immunosorbent assays (ELISA) methods are usually validated only for homogenous matrixes like corn and wheat. More complex materials like fermented forages and mixed feed are not targeted for mycotoxin measurement. The low number of ELISA methods found in the literature neither contained the pH set for fermented forages nor dealt with the setting of the matrix:solvent ratio. The sample preparation of these matrixes needs to be optimized and validated for aflatoxin B1 analysis from fermented forages (corn silage and rye haylage) and mixed feed for Romer AgraQuant® Aflatoxin B1 ELISA (Romer Labs, Austria). Drying and pH adjustment of fermented forages had high importance before mycotoxin extraction. Because of the matrix swelling, the 1 : 5 ratio of the sample/extraction solute should have been increased to 1 : 8 to gain the highest aflatoxin B1 recovery. The accuracy and repeatability of the analysis were tested and found to be suitable for further application.

2.
Sci Rep ; 11(1): 10593, 2021 05 19.
Article in English | MEDLINE | ID: mdl-34011985

ABSTRACT

Biological control against microbial infections has a great potential as an alternative approach instead of fungicidal chemicals, which can cause environmental pollution. The pigment producer Metschnikowia andauensis belongs to the antagonistic yeasts, but details of the mechanism by which it inhibits growth of other microbes are less known. Our results confirmed its antagonistic capacity on other yeast species isolated from fruits or flowers and demonstrated that the antagonistic capacity was well correlated with the size of the red pigmented zone. We have isolated and characterized its red pigment, which proved to be the iron chelating pulcherrimin. Its production was possible even in the presence of 0.05 mg/ml copper sulphate, which is widely used in organic vineyards because of its antimicrobial properties. Production and localisation of the pulcherrimin strongly depended on composition of the media and other culture factors. Glucose, galactose, disaccharides and the presence of pectin or certain amino acids clearly promoted pigment production. Higher temperatures and iron concentration decreased the diameter of red pigmented zones. The effect of pH on pigment production varied depending of whether it was tested in liquid or solid media. In addition, our results suggest that other mechanisms besides the iron depletion of the culture media may contribute to the antagonistic capacity of M. andauensis.


Subject(s)
Amino Acids, Sulfur/biosynthesis , Extracellular Space/enzymology , Metschnikowia/metabolism , Carbon/pharmacology , Cell Count , Copper/metabolism , Hydrogen-Ion Concentration , Ions , Iron/metabolism , Metschnikowia/drug effects , Metschnikowia/growth & development , Piperidines , Polysaccharides/pharmacology , Temperature , Yeasts/drug effects , Yeasts/growth & development
3.
BMC Microbiol ; 20(1): 320, 2020 10 21.
Article in English | MEDLINE | ID: mdl-33087058

ABSTRACT

BACKGROUND: Pathogenic fungi often cause serious infections mainly in immunocompromised persons. The number of infections caused by the non-albicans Candida or other species has significantly increased over the last years. These infections present a major challenge in the health sector because these pathogenic fungi have strong virulence and often show resistance to the commonly used antifungal treatments. To solve the problems caused by the drug resistant pathogenic fungi, it is necessary to find new antifungal agents and their sources. The aim of this study was to give evidence that yeasts can effectively fight against strains which belong to pathogenic fungi and reveal those yeasts which are able to inhibit growth of Kodamaea ohmeri, Pichia kudriavzevii, Naganishia albida or Candida tropicalis. Furthermore, we wanted to determine the effects of certain culturing factors on the growth inhibition. RESULTS: Our screening revealed that although the strains belonging to pathogenic species were much more tolerant to the yeast-produced bioactive agents than the non-disease-associated yeasts, growth of Kodamaea ohmeri and Candida tropicalis could be inhibited by Metschnikowia andauensis, while Naganishia albida could be controlled by Pichia anomala or Candida tropicalis. Our data proved that the experimental circumstances could have a serious impact on the inhibitory capacity of the yeasts. Appearance of inhibition strongly depended on media, pH and temperature. Our data also shed some light on the fact that Pichia kudriavzevii must have high natural resistance to the yeast-produced agents, while other species, such as Saccharomycopsis crataegensis belonged to the easily inhibitable species. CONCLUSIONS: Our study suggests that yeast-produced bioactive agents could be potential growth inhibitory agents against the disease-associated fungi and yeasts can also contribute to alternative approaches to combat against pathogenic fungi. Our data revealed an important role of the culturing factors in inhibition and pointed to the complex nature of antagonism.


Subject(s)
Antifungal Agents/pharmacology , Candidiasis/drug therapy , Yeasts/physiology , Candidiasis/microbiology , Drug Resistance, Fungal , Microbial Sensitivity Tests
4.
Front Microbiol ; 9: 1193, 2018.
Article in English | MEDLINE | ID: mdl-29946303

ABSTRACT

The internal transcribed spacer (ITS) region (ITS1, 5.8S rDNA, and ITS2) separates the genes coding for the SSU 18S and the LSU 26S genes in the rDNA units which are organized into long tandem arrays in the overwhelming majority of fungi. As members of a multigenic family, these units are subject of concerted evolution, which homogenizes their sequences. Exceptions have been observed in certain groups of plants and in a few fungal species. In our previous study we described exceptionally high degree of sequence diversity in the D1/D2 domains of two pulcherrimin-producing Metschnikowia (Saccharomycotina) species which appeared to evolve by reticulation. The major goals of this study were the examination of the diversity of the ITS segments and their evolution. We show that the ITS sequences of these species are not homogenized either, differ from each other by up to 38 substitutions and indels which have dramatic effects on the predicted secondary structures of the transcripts. The high intragenomic diversity makes the D1/D2 domains and the ITS spacers unsuitable for barcoding of these species and therefore the taxonomic position of strains previously assigned to them needs revision. By analyzing the genome sequence of the M. fructicola type strain, we also show that the rDNA of this species is fragmented, contains pseudogenes and thus evolves by the birth-and-death mechanism rather than by homogenisation, which is unusual in yeasts. The results of the network analysis of the sequences further indicate that the ITS regions are also involved in reticulation. M. andauensis and M. fructicola can form interspecies hybrids and their hybrids segregate, providing thus possibilities for reticulation of the rDNA repeats.

5.
Microbiol Res ; 169(5-6): 402-10, 2014.
Article in English | MEDLINE | ID: mdl-24176816

ABSTRACT

Among non-Saccharomyces wine yeasts, Candida zemlpinina is one of the frequently isolated and oenologically important species. It is mostly known from European winemaking areas and it has become one of the key species of non-Saccharomyces wine yeasts to study. Investigating the diversity of C. zemplinina isolates is important for a deeper understanding of the non-Saccharomyces wine yeasts and for the yeast starter industry, as numerous researches have pointed to the potential use of this species in winemaking. For assessing the biodiversity of a larger number of strains, RAPD and micro/minisatellite PCR is often the method of choice, however, this technique is often unstandardized. Whereas some laboratories use these methods for species identifications, others apply RAPD primers for determining intraspecies diversity. In this study, we have tested 5 different RAPD and micro/minisatellite primers on strains of C. zemplinina isolated from different locations. We show that after a rigorous PCR-optimization aimed at reproducibility and comparability of band patterns with these PCR-reactions, diversity of different strains from a wide range of geographic locations is relatively low. The analysis of several oenologically important physiological traits of the strains showed a relatively low level of diversity as well. We also demonstrate that the intraspecific diversity of C. zemplinina observable with different techniques (RAPD, micro/minisatellite or physiological analysis) may be fairly different and not necessarily comparable.


Subject(s)
Candida/classification , Candida/isolation & purification , Genetic Variation , Minisatellite Repeats , Random Amplified Polymorphic DNA Technique , Wine/microbiology , Candida/genetics , Candida/physiology , Cluster Analysis , DNA, Fungal/chemistry , DNA, Fungal/genetics , Molecular Sequence Data , Molecular Typing , Mycological Typing Techniques , Phylogeography , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...