Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Int J Mol Sci ; 24(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38068901

ABSTRACT

The negative cardiovascular effects of polycystic ovary syndrome (PCOS) and vitamin D deficiency (VDD) have been discussed previously; however, the sex differences between PCOS females and males are not yet known. Our aim was to investigate the effect of PCOS and VDD in the carotid artery of male and female Wistar rats. Females were treated with transdermal testosterone (Androgel) for 8 weeks, which caused PCOS. VDD and vitamin D supplementation were accomplished via diet. The carotid arteries' contraction and relaxation were examined using myography. Receptor density was investigated using immunohistochemistry. In PCOS females, angiotensin receptor density, angiotensin II-induced contraction, androgen receptor optical density, and testosterone-induced relaxation increased. The increased contractile response may increase cardiovascular vulnerability in women with PCOS. As an effect of VDD, estrogen receptor density increased in all our groups, which probably compensated for the reduced relaxation caused by VDD. Testosterone-induced relaxation was decreased as a result of VDD in males and non-PCOS females, whereas this reduction was absent in PCOS females. Male sex is associated with increased contraction ability compared with non-PCOS and PCOS females. VDD and Androgel treatment show significant gender differences in their effects on carotid artery reactivity. Both VDD and PCOS result in a dysfunctional vascular response, which can contribute to cardiovascular diseases.


Subject(s)
Polycystic Ovary Syndrome , Vitamin D Deficiency , Humans , Rats , Animals , Female , Male , Vitamin D , Polycystic Ovary Syndrome/complications , Testosterone/pharmacology , Rats, Wistar , Vitamins , Vitamin D Deficiency/complications , Carotid Arteries
2.
Int J Mol Sci ; 24(22)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38003619

ABSTRACT

Both the endocannabinoid system (ECS) and estrogens have significant roles in cardiovascular control processes. Cannabinoid type 1 receptors (CB1Rs) mediate acute vasodilator and hypotensive effects, although their role in cardiovascular pathological conditions is still controversial. Estrogens exert cardiovascular protection in females. We aimed to study the impact of ECS on vascular functions. Experiments were performed on CB1R knockout (CB1R KO) and wild-type (WT) female mice. Plasma estrogen metabolite levels were determined. Abdominal aortas were isolated for myography and histology. Vascular effects of phenylephrine (Phe), angiotensin II, acetylcholine (Ach) and estradiol (E2) were obtained and repeated with inhibitors of nitric oxide synthase (NOS, Nω-nitro-L-arginine) and of cyclooxygenase (COX, indomethacin). Histological stainings (hematoxylin-eosin, resorcin-fuchsin) and immunostainings for endothelial NOS (eNOS), COX-2, estrogen receptors (ER-α, ER-ß) were performed. Conjugated E2 levels were higher in CB1R KO compared to WT mice. Vasorelaxation responses to Ach and E2 were increased in CB1R KO mice, attenuated by NOS-inhibition. COX-inhibition decreased Phe-contractions, while it increased Ach-relaxation in the WT group but not in the CB1R KO. Effects of indomethacin on E2-relaxation in CB1R KO became opposite to that observed in WT. Histology revealed lower intima/media thickness and COX-2 density, higher eNOS and lower ER-ß density in CB1R KO than in WT mice. CB1R KO female mice are characterized by increased vasorelaxation associated with increased utilization of endothelial NO and a decreased impact of constrictor prostanoids. Our results indicate that the absence or inhibition of CB1Rs may have beneficial vascular effects.


Subject(s)
Receptors, Cannabinoid , Vascular Remodeling , Animals , Female , Mice , Acetylcholine/metabolism , Aorta, Abdominal/metabolism , Cyclooxygenase 2/metabolism , Estrogen Receptor beta/metabolism , Estrogens/metabolism , Indomethacin/pharmacology , Mice, Knockout , Nitric Oxide Synthase Type III/metabolism , Receptors, Cannabinoid/metabolism , Vasodilation
3.
Nutrients ; 15(19)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37836508

ABSTRACT

Although gestational diabetes mellitus (GDM) has several short- and long-term adverse effects on the mother and the offspring, no medicine is generally prescribed to prevent GDM. The present systematic review and meta-analysis aimed to investigate the effect of inositol supplementation in preventing GDM and related outcomes. Systematic search was performed in CENTRAL, MEDLINE, and Embase until 13 September 2023. Eligible randomized controlled trials (RCTs) compared the efficacy of inositols to placebo in pregnant women at high risk for GDM. Our primary outcome was the incidence of GDM, whereas secondary outcomes were oral glucose tolerance test (OGTT) and maternal and fetal complications. (PROSPERO registration number: CRD42021284939). Eight eligible RCTs were identified, including the data of 1795 patients. The incidence of GDM was halved by inositols compared to placebo (RR = 0.42, CI: 0.26-0.67). Fasting, 1-h, and 2-h OGTT glucose levels were significantly decreased by inositols. The stereoisomer myoinositol also reduced the risk of insulin need (RR = 0.29, CI: 0.13-0.68), preeclampsia or gestational hypertension (RR = 0.38, CI: 0.2-0.71), preterm birth (RR = 0.44, CI: 0.22-0.88), and neonatal hypoglycemia (RR = 0.12, CI: 0.03-0.55). Myoinositol decrease the incidence of GDM in pregnancies high-risk for GDM. Moreover, myoinositol supplementation reduces the risk of insulin need, preeclampsia or gestational hypertension, preterm birth, and neonatal hypoglycemia. Based on the present study 2-4 g myoinositol canbe suggested from the first trimester to prevent GDM and related outcomes.


Subject(s)
Diabetes, Gestational , Hypertension, Pregnancy-Induced , Hypoglycemia , Pre-Eclampsia , Premature Birth , Pregnancy , Infant, Newborn , Female , Humans , Diabetes, Gestational/prevention & control , Randomized Controlled Trials as Topic , Insulin , Inositol/therapeutic use
4.
Life (Basel) ; 12(2)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35207477

ABSTRACT

Infertility is increasing worldwide; male factors can be identified in nearly half of all infertile couples. Histopathologic evaluation of testicular tissue can provide valuable information about infertility; however, several different evaluation methods and semi-quantitative score systems exist. Our goal was to describe a new, accurate and easy-to-use quantitative computer-based histomorphometric-mathematical image analysis methodology for the analysis of testicular tissue. On digitized, original hematoxylin-eosin (HE)-stained slides (scanned by slide-scanner), quantitatively describable characteristics such as area, perimeter and diameter of testis cross-sections and of individual tubules were measured with the help of continuous magnification. Immunohistochemically (IHC)-stained slides were digitized with a microscope-coupled camera, and IHC-staining intensity measurements on digitized images were also taken. Suggested methods are presented with mathematical equations, step-by-step detailed characterization and representative images are given. Our novel quantitative histomorphometric-mathematical image analysis method can improve the reproducibility, objectivity, quality and comparability of andrological-reproductive medicine research by recognizing even the mild impairments of the testicular structure expressed numerically, which might not be detected with the present semi-quantitative score systems. The technique is apt to be subjected to further automation with machine learning and artificial intelligence and can be named 'Computer-Assisted or -Aided Testis Histology' (CATHI).

5.
Int J Mol Sci ; 22(17)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34502321

ABSTRACT

We examined the vasoactive effect of estradiol in a rat model of early PCOS and the influence of vitamin D deficiency (VDD). We created a model of chronic hyperandrogenism and VDD in adolescent female Wistar rats (N = 46) with four experimental groups: vitamin D supplemented (T-D+), VDD (T-D-), hyperandrogenic and vitamin D supplemented (T+D+), and hyperandrogenic and VDD (T+D-). T+ groups received an 8-week-long transdermal Androgel treatment, D-animals were on vitamin D-reduced diet and D+ rats were supplemented orally with vitamin D3. Estrogen-induced vasorelaxation of thoracic aorta segments were measured with a wire myograph system with or without the inhibition of endothelial nitric oxide synthase (eNOS) or cyclooxygenase-2 (COX-2). The distribution of estrogen receptor (ER), eNOS and COX-2 in the aortic wall was assessed by immunohistochemistry. VDD aortas showed significantly lower estradiol-induced relaxation independently of androgenic status that was further decreased by COX-2 inhibition. COX-2 inhibition failed to alter vessel function in D+ rats. Inhibition of eNOS abolished the estradiol-induced relaxation in all groups. Changes in vascular function in VDD were accompanied by significantly decreased ER and eNOS staining. Short-term chronic hyperandrogenism failed to, but VDD induced vascular dysfunction, compromised estrogen-dependent vasodilatation and changes in ER and eNOS immunostaining.


Subject(s)
Cholecalciferol/pharmacology , Estradiol/pharmacology , Polycystic Ovary Syndrome/drug therapy , Vasodilation , Vitamin D Deficiency/complications , Animals , Aorta/drug effects , Disease Models, Animal , Estrogens/pharmacology , Female , Nitric Oxide Synthase Type III/metabolism , Polycystic Ovary Syndrome/etiology , Polycystic Ovary Syndrome/pathology , Rats , Rats, Wistar , Vitamins/pharmacology
6.
Int J Mol Sci ; 22(15)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34360792

ABSTRACT

The vitamin-D-sensitivity of the cardiovascular system may show gender differences. The prevalence of vitamin D (VD) deficiency (VDD) is high, and it alters cardiovascular function and increases the risk of stroke. Our aim was to investigate the vascular reactivity and histological changes of isolated carotid artery of female and male rats in response to different VD supplies. A total of 48 male and female Wistar rats were divided into four groups: female VD supplemented, female VDD, male VD supplemented, male VDD. The vascular function of isolated carotid artery segments was examined by wire myography. Both vitamin D deficiency and male gender resulted in increased phenylephrine-induced contraction. Acetylcholine-induced relaxation decreased in male rats independently from VD status. Inhibition of prostanoid signaling by indomethacin reduced contraction in females, but increased relaxation ability in male rats. Functional changes were accompanied by VDD and gender-specific histological alterations. Elastic fiber density was significantly decreased by VDD in female rats, but not in males. Smooth muscle actin and endothelial nitric oxide synthase levels were significantly lowered, but the thromboxane receptor was elevated in VDD males. Decreased nitrative stress was detected in both male groups independently from VD supply. The observed interactions between vitamin D deficiency and sex may play a role in the gender difference of cardiovascular risk.


Subject(s)
Carotid Arteries/physiopathology , Sex Characteristics , Vasoconstriction , Vasodilation , Vitamin D Deficiency/physiopathology , Animals , Carotid Arteries/metabolism , Female , Male , Rats , Rats, Wistar , Vitamin D Deficiency/metabolism
7.
Antioxidants (Basel) ; 10(8)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34439438

ABSTRACT

Myocardial sodium-glucose cotransporter 1 (SGLT1) has been shown to be upregulated in humans with heart failure (HF) with or without diabetes. In vitro studies have linked SGLT1 to increased nitro-oxidative stress in cardiomyocytes. We aimed to assess the relation between left ventricular (LV) SGLT1 expression and the extent of nitro-oxidative stress in two non-diabetic rat models of chronic heart failure (HF) evoked by either pressure (TAC, n = 12) or volume overload (ACF, n = 12). Sham-operated animals (Sham-T and Sham-A, both n = 12) served as controls. Both TAC and ACF induced characteristic LV structural and functional remodeling. Western blotting revealed that LV SGLT1 protein expression was significantly upregulated in both HF models (both p < 0.01), whereas the phosphorylation of ERK1/2 was decreased only in ACF; AMPKα activity was significantly reduced in both models. The protein expression of the Nox4 NADPH oxidase isoform was increased in both TAC and ACF compared with respective controls (both p < 0.01), showing a strong positive correlation with SGLT1 expression (r = 0.855, p < 0.001; and r = 0.798, p = 0.001, respectively). Furthermore, SGLT1 protein expression positively correlated with the extent of myocardial nitro-oxidative stress in failing hearts assessed by 3-nitrotyrosin (r = 0.818, p = 0.006) and 4-hydroxy-2-nonenal (r = 0.733, p = 0.020) immunostaining. Therefore, LV SGLT1 protein expression was upregulated irrespective of the nature of chronic hemodynamic overload, and correlated significantly with the expression of Nox4 and with the level of myocardial nitro-oxidative stress, suggesting a pathophysiological role of SGLT1 in HF.

8.
Curr Issues Mol Biol ; 43(1): 79-92, 2021 May 07.
Article in English | MEDLINE | ID: mdl-34066967

ABSTRACT

BACKGROUND: Vitamin D deficiency (VDD) may be considered an independent cardiovascular (CV) risk factor, and it is well known that CV risk is higher in males. Our goal was to investigate the pharmacological reactivity and receptor expression of intramural coronary artery segments of male rats in cases of different vitamin D supply. METHODS: Four-week-old male Wistar rats were divided into a control group (n = 11) with optimal vitamin D supply (300 IU/kgbw/day) and a VDD group (n = 11, <0.5 IU/kgbw/day). After 8 weeks of treatment, intramural coronary artery segments were microprepared, their pharmacological reactivity was examined by in vitro microangiometry, and their receptor expression was investigated by immunohistochemistry. RESULTS: Thromboxane A2 (TXA2)-agonist induced reduced vasoconstriction, testosterone (T) and 17-ß-estradiol (E2) relaxations were significantly decreased, a significant decrease in thromboxane receptor (TP) expression was shown, and the reduction in estrogen receptor-α (ERα) expression was on the border of significance in the VDD group. CONCLUSIONS: VD-deficient male coronary arteries showed deteriorated pharmacological reactivity to TXA2 and sexual steroids (E2, T). Insufficient vasoconstrictor capacity was accompanied by decreased TP receptor expression, and vasodilator impairments were mainly functional. The decrease in vasoconstrictor and vasodilator responses results in narrowed adaptational range of coronaries, causing inadequate coronary perfusion that might contribute to the increased CV risk in VDD.


Subject(s)
Arterioles/pathology , Coronary Artery Disease/pathology , Estradiol/pharmacology , Testosterone/pharmacology , Thromboxane A2/pharmacology , Vitamin D Deficiency/complications , Androgens/pharmacology , Animals , Arterioles/metabolism , Coronary Artery Disease/drug therapy , Coronary Artery Disease/etiology , Coronary Artery Disease/metabolism , Disease Models, Animal , Estrogens/pharmacology , Male , Rats , Rats, Wistar , Receptors, Thromboxane/metabolism , Vasoconstriction , Vitamin D Deficiency/metabolism , Vitamin D Deficiency/pathology
10.
Biol Sex Differ ; 12(1): 37, 2021 05 26.
Article in English | MEDLINE | ID: mdl-34039432

ABSTRACT

BACKGROUND: We aimed to identify sex differences in the network properties and to recognize the geometric alteration effects of long-term swim training in a rat model of exercise-induced left ventricular (LV) hypertrophy. METHODS: Thirty-eight Wistar rats were divided into four groups: male sedentary, female sedentary, male exercised and female exercised. After training sessions, LV morphology and function were checked by echocardiography. The geometry of the left coronary artery system was analysed on pressure-perfused, microsurgically prepared resistance artery networks using in situ video microscopy. All segments over > 80 µm in diameter were studied using divided 50-µm-long cylindrical ring units of the networks. Oxidative-nitrative (O-N) stress markers, adenosine A2A and estrogen receptor (ER) were investigated by immunohistochemistry. RESULTS: The LV mass index, ejection fraction and fractional shortening significantly increased in exercised animals. We found substantial sex differences in the coronary network in the control groups and in the swim-trained animals. Ring frequency spectra were significantly different between male and female animals in both the sedentary and trained groups. The thickness of the wall was higher in males as a result of training. There were elevations in the populations of 200- and 400-µm vessel units in males; the thinner ones developed farther and the thicker ones closer to the orifice. In females, a new population of 200- to 250-µm vessels appeared unusually close to the orifice. CONCLUSIONS: Physical activity and LV hypertrophy were accompanied by a remodelling of coronary resistance artery network geometry that was different in both sexes.


Subject(s)
Coronary Vessels , Sex Characteristics , Animals , Female , Hypertrophy, Left Ventricular , Male , Physical Conditioning, Animal , Rats , Rats, Wistar , Swimming , Ventricular Function, Left
11.
Nutrients ; 13(2)2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33671779

ABSTRACT

Vitamin D deficiency shows positive correlation to cardiovascular risk, which might be influenced by gender specific features. Our goal was to examine the effect of Vitamin D supplementation and Vitamin D deficiency in male and female rats on an important hypertension target organ, the renal artery. Female and male Wistar rats were fed with Vitamin D reduced chow for eight weeks to induce hypovitaminosis. Another group of animals received normal chow with further supplementation to reach optimal serum vitamin levels. Isolated renal arteries of Vitamin D deficient female rats showed increased phenylephrine-induced contraction. In all experimental groups, both indomethacin and selective cyclooxygenase-2 inhibition (NS398) decreased the phenylephrine-induced contraction. Angiotensin II-induced contraction was pronounced in Vitamin D supplemented males. In both Vitamin D deficient groups, acetylcholine-induced relaxation was impaired. In the female Vitamin D supplemented group NS398, in males the indomethacin caused reduced acetylcholine-induced relaxation. Increased elastic fiber density was observed in Vitamin D deficient females. The intensity of eNOS immunostaining was decreased in Vitamin D deficient females. The density of AT1R staining was the highest in the male Vitamin D deficient group. Although Vitamin D deficiency induced renal vascular dysfunction in both sexes, female rats developed more extensive impairment that was accompanied by enzymatic and structural changes.


Subject(s)
Renal Artery/physiopathology , Vitamin D Deficiency/complications , Vitamin D/administration & dosage , Animal Feed/analysis , Animals , Body Weight , Female , Male , Rats , Rats, Wistar , Sex Factors
12.
Cardiovasc Diabetol ; 19(1): 159, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32998746

ABSTRACT

BACKGROUND: Whereas selective sodium-glucose cotransporter 2 (SGLT2) inhibitors consistently showed cardiovascular protective effects in large outcome trials independent of the presence of type 2 diabetes mellitus (T2DM), the cardiovascular effects of dual SGLT1/2 inhibitors remain to be elucidated. Despite its clinical relevance, data are scarce regarding left ventricular (LV) SGLT1 expression in distinct heart failure (HF) pathologies. We aimed to characterize LV SGLT1 expression in human patients with end-stage HF, in context of the other two major glucose transporters: GLUT1 and GLUT4. METHODS: Control LV samples (Control, n = 9) were harvested from patients with preserved LV systolic function who went through mitral valve replacement. LV samples from HF patients undergoing heart transplantation (n = 71) were obtained according to the following etiological subgroups: hypertrophic cardiomyopathy (HCM, n = 7); idiopathic dilated cardiomyopathy (DCM, n = 12); ischemic heart disease without T2DM (IHD, n = 14), IHD with T2DM (IHD + T2DM, n = 11); and HF patients with cardiac resynchronization therapy (DCM:CRT, n = 9, IHD:CRT, n = 9 and IHD-T2DM:CRT, n = 9). We measured LV SGLT1, GLUT1 and GLUT4 gene expressions with qRT-PCR. The protein expression of SGLT1, and activating phosphorylation of AMP-activated protein kinase (AMPKα) and extracellular signal-regulated kinase 1/2 (ERK1/2) were quantified by western blotting. Immunohistochemical staining of SGLT1 was performed. RESULTS: Compared with controls, LV SGLT1 mRNA and protein expressions were significantly and comparably upregulated in HF patients with DCM, IHD and IHD + T2DM (all P < 0.05), but not in HCM. LV SGLT1 mRNA and protein expressions positively correlated with LVEDD and negatively correlated with EF (all P < 0.01). Whereas AMPKα phosphorylation was positively associated with SGLT1 protein expression, ERK1/2 phosphorylation showed a negative correlation (both P < 0.01). Immunohistochemical staining revealed that SGLT1 expression was predominantly confined to cardiomyocytes, and not fibrotic tissue. Overall, CRT was associated with reduction of LV SGLT1 expression, especially in patients with DCM. CONCLUSIONS: Myocardial LV SGLT1 is upregulated in patients with HF (except in those with HCM), correlates significantly with parameters of cardiac remodeling (LVEDD) and systolic function (EF), and is downregulated in DCM patients with CRT. The possible role of SGLT1 in LV remodeling needs to be elucidated.


Subject(s)
Heart Failure/metabolism , Myocardium/chemistry , Sodium-Glucose Transporter 1/analysis , AMP-Activated Protein Kinases/analysis , Adult , Aged , Case-Control Studies , Extracellular Signal-Regulated MAP Kinases/analysis , Female , Gene Expression Regulation , Glucose Transporter Type 1/analysis , Glucose Transporter Type 4/analysis , Heart Failure/genetics , Heart Failure/physiopathology , Heart Failure/therapy , Humans , Male , Middle Aged , Phosphorylation , Sodium-Glucose Transporter 1/genetics , Sodium-Glucose Transporter 2/analysis
13.
Antioxidants (Basel) ; 9(10)2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33076449

ABSTRACT

BACKGROUND: Several reports prove interconnection between vitamin D (VD) deficiency and increased cardiovascular risk. Our aim was to investigate the effects of VD status on biomechanical and oxidative-nitrative (O-N) stress parameters of coronary arterioles in rats. METHODS: 4-week-old male Wistar rats were divided into a control group (11 animals) with optimal VD supply (300 IU/kgbw/day) and a VD-deficient group (11 animals, <5 IU/kg/day). After 8 weeks, coronary arteriole segments were prepared. Geometrical, elastic, and biomechanical characteristics were measured by in vitro arteriography. O-N stress markers were investigated by immunohistochemistry. RESULTS: Inner radius decreased; wall thickness and wall-thickness/lumen diameter ratio increased; tangential wall stress and elastic modulus were reduced in VD-deficient group. No difference could be found in wall-cross-sectional area, intima-media area %. While the elastic elements of the vessel wall decreased, the α-smooth muscle actin (α-SMA) immunostaining intensity showed no changes. Significant elevation was found in the lipid peroxidation marker of 4-hidroxy-2-nonenal (HNE), while other O-N stress markers staining intensity (poly(ADP)ribose, 3-nitrotyrosine) did not change. CONCLUSIONS: Inward eutrophic remodeling has developed. The potential background of these impairments may involve the initial change in oxidative damage markers (HNE). These mechanisms can contribute to the increased incidence of the cardiovascular diseases in VD deficiency.

14.
Sci Rep ; 10(1): 5358, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32210293

ABSTRACT

Heart transplantation remains the definitive therapy of end-stage heart failure. Ischemia-reperfusion injury occurring during transplantation is a primary determinant of long-term outcome of heart transplantation and primary graft insufficiency. Modification of the nitric oxide/soluble guanylate cyclase/cyclic guanosine monophosphate signaling pathway appears to be one of the most promising among the pharmacological interventional options. We aimed at characterizing the cardio-protective effects of the soluble guanylate cyclase stimulator riociguat in a rat model of heterotopic heart transplantation. Donor Lewis rats were treated orally with either riociguat or placebo for two days (n = 9) in each transplanted group and (n = 7) in donor groups. Following explantation, hearts were heterotopically transplanted. After one hour reperfusion, left ventricular pressure-volume relations and coronary blood flow were recorded. Molecular biological measurements and histological examination were also completed. Left ventricular contractility (systolic pressure: 117 ± 13 vs. 48 ± 5 mmHg, p < 0.001; dP/dtmax: 2963 ± 221 vs. 1653 ± 159 mmHg/s, p < 0.001), active relaxation (dP/dtmin: -2014 ± 305 vs. -1063 ± 177 mmHg/s, p = 0.02; all at 120 µl of left ventricular volume), and alteration of coronary blood flow standardized to heart weight (2.55 ± 0.32 vs. 1.67 ± 0.22 ml/min/g, p = 0.03) were markedly increased following preconditioning with riociguat. Myocardial apoptosis markers were also significantly reduced in the riociguat pretreated group as well as the antioxidant markers were elevated. Pharmacological preconditioning with riociguat decreases ischemia-reperfusion injury and improves donor organ function in our animal model of heart transplantation. Therefore, riociguat might be a potential cardioprotective agent.


Subject(s)
Enzyme Activators/pharmacology , Heart Transplantation/methods , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Soluble Guanylyl Cyclase/metabolism , Animals , Antioxidants/metabolism , Cardiotonic Agents/pharmacology , Cyclic GMP/metabolism , Cyclic GMP-Dependent Protein Kinases/metabolism , Enzymes/genetics , Enzymes/metabolism , Heart Ventricles/drug effects , Male , Nitric Oxide/metabolism , Rats, Inbred Lew , Signal Transduction/drug effects , Tissue Donors , Ventricular Function
15.
Antioxidants (Basel) ; 8(12)2019 Nov 30.
Article in English | MEDLINE | ID: mdl-31801203

ABSTRACT

Hyperbaric oxygen therapy (HBOT) is frequently used after soft tissue injuries and in diabetic patients with ulcerated wounds; however, its ability to increase oxidative stress casts doubts. Diabetes (DM) in male Wistar rats (N = 20) weighing 300 g were induced by a single dose of streptozotocin. Ten diabetics (DMHBOT) and 10 controls (CHBOT) underwent a one-hour long hyperbaric oxygen treatment protocol (2.5 bar) 12 times after the 3rd week of diabetes. Ten animals remained untreated. Eight weeks after diabetes induction, we measured the 24-hour blood glucose profile and cardiovascular function (sonocardiography and the relaxation ability of aortae). Malonyl-dialdehyde (MDA) and cytokine levels were measured in blood plasma. Poly(ADP-ribose) polymerase (PARP) activity was estimated in cardiac and aortic tissue. HBOT did not alter most of the cardiovascular parameters. PARylation in cardiac and aortic tissues, plasma MDA levels were elevated in diabetic rats. HBOT prevented the increase of MDA in diabetic animals. In addition, levels of the pro-inflammatory cytokine-induced neutrophil chemoattractant-1 (CINC-1) the levels of anti-inflammatory tissue inhibitor of metalloproteases-1 were not altered in diabetes or in hyperoxia. Our results suggest that HBOT does not increase long-term oxidative stress, and, similar to training, the TBARS products, nitrotyrosine formation and poly(ADP-ribosyl)ation may be eased as a result of hyperoxia.

16.
Biomolecules ; 9(9)2019 09 10.
Article in English | MEDLINE | ID: mdl-31509973

ABSTRACT

AIM: We aimed to examine the alterations of the insulin signaling pathway, autophagy, nitrative stress and the effect of vitamin D supplementation in the liver and ovaries of vitamin D deficient hyperandrogenic rats. METHODS: Female Wistar rats received eight weeks of transdermal testosterone treatment and lived on a low vitamin D diet (D-T+). Vitamin D supplementation was achieved by oral administration of vitamin D3 (D+T+). Sham-treated (D+T-) and vitamin D deficient animals (D-T-) served as controls. (N = 10-12 per group). RESULTS: D-T+ animals showed decreased LC3 II levels in the liver and increased p-Akt/Akt and p-eNOS/eNOS ratios with decreased insulin receptor staining in the ovaries. Vitamin D supplementation prevented the increase of Akt phosphorylation in the ovaries. Vitamin D deficiency itself also led to decreased LC3 II levels in the liver and decreased insulin receptor staining in the ovaries. D-T+ group showed no increase in nitrotyrosine staining; however, the ovaries of D-T- rats and the liver of D+T+ animals showed increased staining intensity. CONCLUSION: Vitamin D deficiency itself might lead to disrupted ovarian maturation and autophagy malfunction in the liver. Preventing Akt phosphorylation may contribute to the beneficial effect of vitamin D treatment on ovarian function in hyperandrogenism.


Subject(s)
Autophagy , Liver/pathology , Ovary/pathology , Polycystic Ovary Syndrome/complications , Polycystic Ovary Syndrome/pathology , Vitamin D Deficiency/complications , Animals , Cell Proliferation , Disease Models, Animal , Female , Nitrosative Stress , Polycystic Ovary Syndrome/metabolism , Rats , Rats, Wistar , Receptor, Insulin/metabolism , Receptors, Calcitriol/metabolism , Signal Transduction
17.
J Transl Med ; 17(1): 127, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30992077

ABSTRACT

BACKGROUND: The sodium-glucose cotransporter-2 (SGLT2) inhibitor canagliflozin has been shown to reduce major cardiovascular events in type 2 diabetic patients, with a pronounced decrease in hospitalization for heart failure (HF) especially in those with HF at baseline. These might indicate a potent direct cardioprotective effect, which is currently incompletely understood. We sought to characterize the cardiovascular effects of acute canagliflozin treatment in healthy and infarcted rat hearts. METHODS: Non-diabetic male rats were subjected to sham operation or coronary artery occlusion for 30 min, followed by 120 min reperfusion in vivo. Vehicle or canagliflozin (3 µg/kg bodyweight) was administered as an intravenous bolus 5 min after the onset of ischemia. Rats underwent either infarct size determination with serum troponin-T measurement, or functional assessment using left ventricular (LV) pressure-volume analysis. Protein, mRNA expressions, and 4-hydroxynonenal (HNE) content of myocardial samples from sham-operated and infarcted rats were investigated. In vitro organ bath experiments with aortic rings from healthy rats were performed to characterize a possible effect of canagliflozin on vascular function. RESULTS: Acute treatment with canagliflozin significantly reduced myocardial infarct size compared to vehicle (42.5 ± 2.9% vs. 59.3 ± 4.2%, P = 0.006), as well as serum troponin-T levels. Canagliflozin therapy alleviated LV systolic and diastolic dysfunction following myocardial ischemia-reperfusion injury (IRI), and preserved LV mechanoenergetics. Western blot analysis revealed an increased phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and endothelial nitric-oxide synthase (eNOS), which were not disease-specific effects. Canagliflozin elevated the phosphorylation of Akt only in infarcted hearts. Furthermore, canagliflozin reduced the expression of apoptotic markers (Bax/Bcl-2 ratio) and that of genes related to myocardial nitro-oxidative stress. In addition, treated hearts showed significantly lower HNE positivity. Organ bath experiments with aortic rings revealed that preincubation with canagliflozin significantly enhanced endothelium-dependent vasodilation in vitro, which might explain the slight LV afterload reducing effect of canagliflozin in healthy rats in vivo. CONCLUSIONS: Acute intravenous administration of canagliflozin after the onset of ischemia protects against myocardial IRI. The medication enhances endothelium dependent vasodilation independently of antidiabetic action. These findings might further contribute to our understanding of the cardiovascular protective effects of canagliflozin reported in clinical trials.


Subject(s)
Canagliflozin/therapeutic use , Cardiotonic Agents/therapeutic use , Endothelium/pathology , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/prevention & control , Vasodilation , Aldehydes/metabolism , Animals , Aorta/drug effects , Aorta/pathology , Aorta/physiopathology , Apoptosis/drug effects , Biomarkers/metabolism , Blood Glucose/metabolism , Canagliflozin/pharmacology , Cardiotonic Agents/pharmacology , Diastole/drug effects , Endothelium/drug effects , Endothelium/physiopathology , Glycosuria/complications , Glycosuria/physiopathology , Kidney/drug effects , Kidney/physiopathology , Liver/drug effects , Liver/physiopathology , Male , Myocardial Reperfusion Injury/complications , Myocardial Reperfusion Injury/physiopathology , Nitrosative Stress/drug effects , Oxidative Stress/drug effects , Phosphorylation/drug effects , Rats, Sprague-Dawley , Signal Transduction/drug effects , Systole/drug effects , Vasodilation/drug effects , Ventricular Function, Left/drug effects
18.
Diab Vasc Dis Res ; 15(4): 294-301, 2018 07.
Article in English | MEDLINE | ID: mdl-29465004

ABSTRACT

Hyperandrogenic state in females is accompanied with metabolic syndrome, insulin resistance and vascular pathologies. A total of 67%-85% of hyperandrogenic women suffer also from vitamin D deficiency. We aimed to check a potential interplay between hyperandrogenism and vitamin D deficiency in producing insulin resistance and effects on coronary resistance arteries. Adolescent female rats were divided into four groups, 11-12 animals in each. Transdermal testosterone-treated and vehicle-treated animals were kept either on vitamin D-deficient or on vitamin D-supplemented diet for 8 weeks. Plasma sexual steroid, insulin, leptin and vitamin D plasma levels were measured, and oral glucose tolerance test was performed. In coronary arterioles, insulin receptor and vitamin D receptor expressions were tested by immunohistochemistry, and insulin-induced relaxation was measured in vitro on isolated coronary resistance artery segments. Testosterone impaired glucose tolerance, and it diminished insulin relaxation but did not affect the expression of insulin and vitamin D receptors in vascular tissue. Vitamin D deficiency elevated postprandial insulin levels and homeostatic model assessment insulin resistance. It also diminished insulin-induced coronary arteriole relaxation, while it raised the expression of vitamin D and insulin receptors in the endothelial and medial layers. Our conclusion is that both hyperandrogenism and vitamin D deficiency reduce sensitivity of coronary vascular tissue to insulin, but they do it with different mechanisms.


Subject(s)
Arterioles/physiopathology , Coronary Artery Disease/etiology , Coronary Vessels/physiopathology , Hyperandrogenism/complications , Insulin Resistance , Polycystic Ovary Syndrome/complications , Vitamin D Deficiency/complications , Animals , Arterioles/metabolism , Biomarkers/blood , Blood Glucose/metabolism , Coronary Artery Disease/blood , Coronary Artery Disease/physiopathology , Coronary Vessels/metabolism , Disease Models, Animal , Female , Glucose Tolerance Test , Gonadal Steroid Hormones/blood , Hyperandrogenism/blood , Hyperandrogenism/physiopathology , Insulin/blood , Leptin/blood , Polycystic Ovary Syndrome/blood , Polycystic Ovary Syndrome/physiopathology , Rats, Wistar , Time Factors , Vascular Resistance , Vasodilation , Vitamin D/blood , Vitamin D Deficiency/blood , Vitamin D Deficiency/physiopathology
19.
Sci Rep ; 7(1): 14232, 2017 10 27.
Article in English | MEDLINE | ID: mdl-29079777

ABSTRACT

While heart transplantation (HTX) is the definitive therapy of heart failure, donor shortage is emerging. Pharmacological activation of soluble guanylate cyclase (sGC) and increased cGMP-signalling have been reported to have cardioprotective properties. Gemfibrozil has recently been shown to exert sGC activating effects in vitro. We aimed to investigate whether pharmacological preconditioning of donor hearts with gemfibrozil could protect against ischemia/reperfusion injury and preserve myocardial function in a heterotopic rat HTX model. Donor Lewis rats received p.o. gemfibrozil (150 mg/kg body weight) or vehicle for 2 days. The hearts were explanted, stored for 1 h in cold preservation solution, and heterotopically transplanted. 1 h after starting reperfusion, left ventricular (LV) pressure-volume relations and coronary blood flow (CBF) were assessed to evaluate early post-transplant graft function. After 1 h reperfusion, LV contractility, active relaxation and CBF were significantly (p < 0.05) improved in the gemfibrozil pretreated hearts compared to that of controls. Additionally, gemfibrozil treatment reduced nitro-oxidative stress and apoptosis, and improved cGMP-signalling in HTX. Pharmacological preconditioning with gemfibrozil reduces ischemia/reperfusion injury and preserves graft function in a rat HTX model, which could be the consequence of enhanced myocardial cGMP-signalling. Gemfibrozil might represent a useful tool for cardioprotection in the clinical setting of HTX surgery soon.


Subject(s)
Gemfibrozil/pharmacology , Heart Transplantation , Heart/drug effects , Heart/physiology , Ischemic Preconditioning, Myocardial , Animals , Coronary Vessels/drug effects , Coronary Vessels/physiology , Cyclic GMP/blood , Cyclic GMP/metabolism , Gene Expression Regulation/drug effects , Hemodynamics/drug effects , Leukocytes/drug effects , Leukocytes/immunology , Male , Myocardium/metabolism , Myocardium/pathology , Nitric Oxide Synthase Type III/genetics , Platelet Activation/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats
20.
Orv Hetil ; 156(47): 1932-6, 2015 Nov 22.
Article in Hungarian | MEDLINE | ID: mdl-26568110

ABSTRACT

INTRODUCTION: Oxidative-nitrative stress and poly(ADP-ribose) polymerase activation observed in gestational diabetes may play role in the increased cardiovascular risk in later life. AIM: The present study aimed to examine the influence of the severity of previous gestational diabetes (insulin need) on vascular function three years after delivery. Furthermore, the authors investigated the relation of vascular function with oxidative-nitrative stress and poly(ADP-ribose) polymerase activation. METHOD: Macrovascular function was measured by applanation tonometry; microvascular reactivity was assessed by provocation tests during Laser-Doppler flowmetry in 40 women who had gestational diabetes 3 years before the study. Oxidative-nitrative stress and poly(ADP-ribose) polymerase activity in blood components were determined by colorimetry and immunohistochemistry. RESULTS: Three years after insulin treated gestational diabetes impaired microvascular function and increased oxidative stress was observed compared to mild cases. CONCLUSIONS: The severity of previous gestational diabetes affects microvascular dysfunction that is accompanied by elevated oxidative stress. Nitrative stress and poly(ADP-ribose) polymerase activity correlates with certain vascular factors not related to the severity of the disease.


Subject(s)
Cardiovascular Diseases/metabolism , Diabetes, Gestational/diagnosis , Diabetes, Gestational/physiopathology , Free Radicals/metabolism , Microcirculation , Oxidative Stress , Poly(ADP-ribose) Polymerases/metabolism , Adult , Cardiovascular Diseases/physiopathology , Diabetes, Gestational/metabolism , Enzyme Activation , Female , Follow-Up Studies , Humans , Nitric Oxide/metabolism , Poly (ADP-Ribose) Polymerase-1 , Pregnancy , Reactive Oxygen Species/metabolism , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...