Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Sci Rep ; 14(1): 7793, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565898

ABSTRACT

An estimated 70% of critically ill patients receive antibiotics, most frequently beta-lactams. The pharmacokinetic properties of these substances in this patient population are poorly predictable. Therapeutic drug monitoring (TDM) is helpful in making personalized decisions in this field, but its overall impact as a clinical decision-supporting tool is debated. We aimed to evaluate the clinical implications of adjusting beta-lactam dosages based on TDM in the critically ill population by performing a systematic review and meta-analysis of available investigations. Randomized controlled trials and observational studies were retrieved by searching three major databases. The intervention group received TDM-guided beta-lactam treatment, that is, at least one dose reconsideration based on the result of the measurement of drug concentrations, while TDM-unadjusted dosing was employed in the comparison group. The outcomes were evaluated using forest plots with random-effects modeling and subgroup analysis. Eight eligible studies were identified, including 1044 patients in total. TDM-guided beta-lactam treatment was associated with improved clinical cure from infection [odds ratio (OR): 2.22 (95% confidence interval (CI): 1.78-2.76)] and microbiological eradication [OR: 1.72 (CI: 1.05-2.80)], as well as a lower probability of treatment failure [OR: 0.47 (CI: 0.36-0.62)], but the heterogeneity of studies was remarkably high, especially in terms of mortality (70%). The risk of bias was moderate. While the TDM-guided administration of beta-lactams to critically ill patients has a favorable impact, standardized study designs and larger sample sizes are required for developing evidence-based protocols in this field.


Subject(s)
Critical Illness , beta-Lactams , Adult , Humans , Critical Illness/therapy , Drug Monitoring/methods , Randomized Controlled Trials as Topic , Anti-Bacterial Agents
2.
Clin Pharmacol Ther ; 115(2): 206-212, 2024 02.
Article in English | MEDLINE | ID: mdl-38032816

ABSTRACT

Pancreatitis is the most common complication of endoscopic retrograde cholangiopancreatography (ERCP). As the management of pancreatitis is limited, clinical approaches focus on the prevention of post-ERCP pancreatitis (PEP). In theory, the serine protease inhibitor nafamostat can reduce circulating inflammatory mediators in pancreatitis. We aimed to investigate the effect of nafamostat in the prevention of PEP in this systematic review and meta-analysis. The protocol for this review was registered in PROSPERO (CRD42022367988). We systematically searched 5 databases without any filters on September 26, 2022. The eligible population was adult patients undergoing ERCP. We compared the PEP preventive effect of nafamostat to placebo. The main outcome was the occurrence of PEP. We calculated the pooled odds ratios (ORs), mean differences, and corresponding 95% confidence intervals (95% CIs) and multilevel model. The risk of bias was assessed using the Rob2 tool. Seven randomized controlled trials involving 2,962 patients were eligible for inclusion. Nafamostat reduced the overall incidence rate of PEP (20 mg, OR: 0.50, 95% CI: 0.30-0.82 and 50 mg, OR: 0.48, 95% CI: 0.24-0.96). However, the occurrence of mild PEP was significantly reduced only in the subgroup receiving 20 mg nafamostat (OR, 0.49, 95% CI: 0.31-0.77). Overall, nafamostat therapy reduced moderate PEP in high-risk patients (OR: 0.18, 95% CI: 0.0.4-0.84) and mild PEP in low-risk patients (OR: 0.32, 95% CI: 0.17-0.61). Nafamostat is an effective therapy in the prevention of mild post-ERCP pancreatitis. Further research is required to determine the cost-effectiveness of this therapy.


Subject(s)
Benzamidines , Cholangiopancreatography, Endoscopic Retrograde , Guanidines , Pancreatitis , Adult , Humans , Benzamidines/therapeutic use , Cholangiopancreatography, Endoscopic Retrograde/adverse effects , Guanidines/therapeutic use , Incidence , Pancreatitis/epidemiology , Pancreatitis/etiology , Pancreatitis/prevention & control , Randomized Controlled Trials as Topic
3.
Int J Mol Sci ; 24(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37686007

ABSTRACT

The calcium-binding protein S100A9 is recognized as an important component of the brain neuroinflammatory response to the onset and development of neurodegenerative disease. S100A9 is intrinsically amyloidogenic and in vivo co-aggregates with amyloid-ß peptide and α-synuclein in Alzheimer's and Parkinson's diseases, respectively. It is widely accepted that calcium dyshomeostasis plays an important role in the onset and development of these diseases, and studies have shown that elevated levels of calcium limit the potential for S100A9 to adopt a fibrillar structure. The exact mechanism by which calcium exerts its influence on the aggregation process remains unclear. Here we demonstrate that despite S100A9 exhibiting α-helical secondary structure in the absence of calcium, the protein exhibits significant plasticity with interconversion between different conformational states occurring on the micro- to milli-second timescale. This plasticity allows the population of conformational states that favour the onset of fibril formation. Magic-angle spinning solid-state NMR studies of the resulting S100A9 fibrils reveal that the S100A9 adopts a single structurally well-defined rigid fibrillar core surrounded by a shell of approximately 15-20 mobile residues, a structure that persists even when fibrils are produced in the presence of calcium ions. These studies highlight how the dysregulation of metal ion concentrations can influence the conformational equilibria of this important neuroinflammatory protein to influence the rate and nature of the amyloid deposits formed.


Subject(s)
Calcium , Neurodegenerative Diseases , Humans , Amyloid , Nuclear Magnetic Resonance, Biomolecular , Calcium, Dietary , Calgranulin B
4.
Int J Mol Sci ; 24(16)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37629028

ABSTRACT

The assembly of α-synuclein into cross-ß structured amyloid fibers results in Lewy body deposits and neuronal degeneration in Parkinson's disease patients. As the cell environment is highly crowded, interactions between the formed amyloid fibers and a range of biomolecules can occur in cells. Although amyloid fibers are considered chemically inert species, recent in vitro work using model substrates has shown α-synuclein amyloids, but not monomers, to catalyze the hydrolysis of ester and phosphoester bonds. To search for putative catalytic activity of α-synuclein amyloids on biologically relevant metabolites, we here incubated α-synuclein amyloids with neuronal SH-SY5Y cell lysates devoid of proteins. LC-MS-based metabolomic (principal component and univariate) analysis unraveled distinct changes in several metabolite levels upon amyloid (but not monomer) incubation. Of 63 metabolites identified, the amounts of four increased (3-hydroxycapric acid, 2-pyrocatechuic acid, adenosine, and NAD), and the amounts of seventeen decreased (including aromatic and apolar amino acids, metabolites in the TCA cycle, keto acids) in the presence of α-synuclein amyloids. Many of these metabolite changes match what has been reported previously in Parkinson's disease patients and animal-model metabolomics studies. Chemical reactivity of α-synuclein amyloids may be a new gain-of-function that alters the metabolite composition in cells and, thereby, modulates disease progression.


Subject(s)
Neuroblastoma , Parkinson Disease , Humans , Animals , alpha-Synuclein , Inclusion Bodies , Amyloidogenic Proteins
5.
Curr Neuropharmacol ; 21(12): 2505-2515, 2023.
Article in English | MEDLINE | ID: mdl-37519000

ABSTRACT

BACKGROUND: Spasticity affects 54% of multiple sclerosis (MS) patients at disease onset, but this rate gradually increases with disease progression. Spasticity does not fully respond to standard treatment in one-third of the patients. OBJECTIVE: Our systematic review and meta-analysis assessed whether add-on nabiximols, can improve MS-associated refractory spasticity. METHODS: The systematic literature search was performed in Web of Science, MEDLINE, Scopus, CENTRAL, and Embase, on 15/10/2021, without restrictions. We included in the review blinded, randomized, placebo-controlled trials evaluating the efficacy of nabiximols in adult MS patients with refractory spasticity, by comparison with placebo. The primary outcome was responder rate by spasticity numerical rating scale (NRS). Secondary outcomes were spasticity-related parameters. We used random effect models to calculate odds ratios (OR) or mean differences and the corresponding 95% CI. Bias-factors were assessed with Cochrane risk of bias tool (RoB2). (PROSPERO ID: CRD42021282177). RESULTS: We identified 9 eligible articles, of which 7 (1128 patients) were included in the meta-analysis. The spasticity numerical rating scale (NRS) was significantly higher in the nabiximols group than in the placebo group (OR 2.41 (95% CI 1.39; 4.18)). Secondary outcomes were in accordance with our primary results. At least some concerns were detected in the risk of bias analysis. CONCLUSION: Our results indicate that nabiximols is efficient in MS associated spasticity, refractory to standard treatment and it may be considered as add-on symptomatic therapy. Nevertheless, further studies are needed to establish the optimal treatment protocol - dose, duration, moment of initiation, disease type.


Subject(s)
Cannabidiol , Multiple Sclerosis , Adult , Humans , Multiple Sclerosis/complications , Multiple Sclerosis/drug therapy , Treatment Outcome , Dronabinol/therapeutic use , Cannabidiol/therapeutic use , Muscle Spasticity/drug therapy , Muscle Spasticity/chemically induced , Muscle Spasticity/complications , Randomized Controlled Trials as Topic
6.
Biophys J ; 122(12): 2556-2563, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37170496

ABSTRACT

Addition of amyloid seeds to aggregation-prone monomers allows for amyloid fiber growth (elongation) omitting slow nucleation. We here combine Thioflavin T fluorescence (probing formation of amyloids) and solution-state NMR spectroscopy (probing disappearance of monomers) to assess elongation kinetics of the amyloidogenic protein, α-synuclein, for which aggregation is linked to Parkinson's disease. We found that both spectroscopic detection methods give similar kinetic results, which can be fitted by applying double exponential decay functions. When the origin of the two-phase behavior was analyzed by mathematical modeling, parallel paths as well as stop-and-go behavior were excluded as possible explanations. Instead, supported by previous theory, the experimental elongation data reveal distinct kinetic regimes that depend on instantaneous monomer concentration. At low monomer concentrations (toward end of experiments), amyloid growth is limited by conformational changes resulting in ß-strand alignments. At the higher monomer concentrations (initial time points of experiments), growth occurs rapidly by incorporating monomers that have not successfully completed the conformational search. The presence of a fast disordered elongation regime at high monomer concentrations agrees with coarse-grained simulations and theory but has not been detected experimentally before. Our results may be related to the wide range of amyloid folds observed.


Subject(s)
Amyloid , alpha-Synuclein , alpha-Synuclein/chemistry , Amyloid/chemistry , Amyloidogenic Proteins , Molecular Conformation , Fluorescence , Kinetics , Amyloid beta-Peptides
7.
ACS Chem Neurosci ; 14(4): 603-608, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36745416

ABSTRACT

Amyloid fibers of the protein α-synuclein, found in Lewy body deposits, are hallmarks of Parkinson's disease. We here show that α-synuclein amyloids catalyze biologically relevant chemical reactions in vitro. Amyloid fibers, but not monomers, of α-synuclein catalyzed hydrolysis of the model ester para-nitrophenyl acetate and dephosphorylation of the model phosphoester para-nitrophenyl-orthophosphate. When His50 was replaced with Ala in α-synuclein, dephosphorylation but not esterase activity of amyloids was diminished. Truncation of the protein's C-terminus had no effect on fiber catalytic efficiency. Catalytic activity of α-synuclein fibers may be a new gain-of-function that plays a role in Parkinson's disease.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Parkinson Disease/metabolism , Lewy Bodies/metabolism , Amyloid/metabolism
8.
Sci Rep ; 13(1): 2791, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36797320

ABSTRACT

Although current guidelines do not recommend the use of proton pump inhibitors (PPIs) in the standard of care of acute pancreatitis (AP), they are often prescribed in clinical practice, mainly for ulcer stress prophylaxis. In this systematic review and meta-analysis we evaluated the association between the use of PPIs in the management of AP and various clinical outcomes. We conducted the systematic research in six databases without restrictions on January 24th, 2022. We investigated adult patient with AP, who were treated with PPI compared to conventional therapy. The pooled odds ratios, mean differences, and corresponding 95% confidence intervals were calculated with random effect model. We included six RCTs and three cohort studies, consisting of 28,834 patients. We found a significant decrease in the rate of pancreatic pseudocyst formation in patients who received PPI treatment. PPI use was associated with a higher risk of GI bleeding, however this finding could be due to the patients' comorbid conditions. We found no significant difference in the rates of 7-day mortality, length of hospital stay, and acute respiratory distress syndrome between the groups. The available data on this topic are limited; therefore, further well designed RCTs are needed to evaluate the potential benefits and adverse effects of PPIs in AP.


Subject(s)
Pancreatitis , Peptic Ulcer , Adult , Humans , Proton Pump Inhibitors/adverse effects , Acute Disease , Pancreatitis/drug therapy , Peptic Ulcer/drug therapy , Gastrointestinal Hemorrhage/drug therapy
9.
Nanoscale Adv ; 4(20): 4272-4278, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36321154

ABSTRACT

Palladium ions complexed with nonlinear bidentate ligands have been shown to form hollow, spherical shells with high symmetries. We show that such structures can be reproduced using model anisotropic mesoscale building blocks featuring excluded volume and long-range ionic interactions. A linear building block with a central charged particle, in combination with a bent 'ligand' particle with opposite charges at the ends is sufficient to drive the system towards planar coordination, and the charge ratio determines the coordination number. Similar to the molecular systems, the bend in the 'ligand' particle determines the curvature of the shells that these building blocks prefer. Besides reproducing exotic structures such as M30L60 and M48L96 tetravalent Goldberg polyhedra, we identify highly cooperative single transition state rearrangements between low-energy competing structures as well, corresponding to rotatory motions of a planar subunit within the spherical shell.

10.
Sci Rep ; 12(1): 17979, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36289288

ABSTRACT

Currently, there is no specific pharmaceutical agent for treating acute pancreatitis (AP). Somatostatin and its analogues have been used to prevent the autolysis of the pancreas in AP, however, their effectiveness has not been confirmed. This investigation aimed to examine the efficacy of ulinastatin, a protease inhibitor, combined with somatostatin analogues in the treatment of AP. We conducted a systematic database search in 4 databases to identify randomized controlled trials in which the efficacy of ulinastatin in combination with somatostatin analogue was compared to somatostatin analogue alone in patients with AP. Since the patient populations of analysed papers were slightly different, we used random effect models to pool odds ratios (OR) and mean differences (MD) and the corresponding 95% confidence intervals (CI). A total of 9 articles comprising 1037 patients were included in the meta-analysis. The combination therapy significantly reduced the complication rates for acute respiratory distress syndrome, acute kidney injury, and multiple organ dysfunction. Symptoms were relieved threefold with the combination therapy compared to somatostatin alone, and combination therapy significantly shortened the length of hospital stay. The decrease in mortality was not statistically significant..


Subject(s)
Pancreatitis , Humans , Acute Disease , Pancreatitis/complications , Pancreatitis/drug therapy , Protease Inhibitors , Randomized Controlled Trials as Topic , Somatostatin/therapeutic use
11.
Proc Natl Acad Sci U S A ; 119(37): e2206905119, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36067318

ABSTRACT

The protein mediator of ERBB2-driven cell motility 1 (Memo1) is connected to many signaling pathways that play key roles in cancer. Memo1 was recently postulated to bind copper (Cu) ions and thereby promote the generation of reactive oxygen species (ROS) in cancer cells. Since the concentration of Cu as well as ROS are increased in cancer cells, both can be toxic if not well regulated. Here, we investigated the Cu-binding capacity of Memo1 using an array of biophysical methods at reducing as well as oxidizing conditions in vitro. We find that Memo1 coordinates two reduced Cu (Cu(I)) ions per protein, and, by doing so, the metal ions are shielded from ROS generation. In support of biological relevance, we show that the cytoplasmic Cu chaperone Atox1, which delivers Cu(I) in the secretory pathway, can interact with and exchange Cu(I) with Memo1 in vitro and that the two proteins exhibit spatial proximity in breast cancer cells. Thus, Memo1 appears to act as a Cu(I) chelator (perhaps shuttling the metal ion to Atox1 and the secretory path) that protects cells from Cu-mediated toxicity, such as uncontrolled formation of ROS. This Memo1 functionality may be a safety mechanism to cope with the increased demand of Cu ions in cancer cells.


Subject(s)
Copper Transport Proteins , Copper , Intracellular Signaling Peptides and Proteins , Metallochaperones , Molecular Chaperones , Cell Line, Tumor , Copper/metabolism , Copper Transport Proteins/genetics , Copper Transport Proteins/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Ions/metabolism , Metallochaperones/genetics , Metallochaperones/metabolism , Models, Molecular , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Oxidation-Reduction , Protein Binding , Reactive Oxygen Species/metabolism
12.
Vaccine ; 40(37): 5445-5451, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35931634

ABSTRACT

Mass vaccination against the disease caused by the novel coronavirus (COVID-19) was a crucial step in slowing the spread of SARS-CoV-2 in 2021. Even in the face of new variants, it still remains extremely important for reducing hospitalizations and COVID-19 deaths. In order to better understand the short- and long-term dynamics of humoral immune response, we present a longitudinal analysis of post-vaccination IgG levels in a cohort of 166 Romanian healthcare workers vaccinated with BNT162b2 with weekly follow-up until 35 days past the first dose and monthly follow-up up to 6 months post-vaccination. A subset of the patients continued with follow-up after 6 months and either received a booster dose or got infected during the Delta wave in Romania. Tests were carried out on 1694 samples using a CE-marked IgG ELISA assay developed in-house, containing S1 and N antigens of the wild type virus. Participants infected with SARS-CoV-2 before vaccination mount a quick immune response, reaching peak IgG levels two weeks after the first dose, while IgG levels of previously uninfected participants mount gradually, increasing abruptly after the second dose. Overall higher IgG levels are maintained for the previously infected group throughout the six month primary observation period (e.g. 36-65 days after the first dose, the median value in the previously infected group is 5.29 AU/ml, versus 3.58 AU/ml in the infection naïve group, p less than 0.001). The decrease of IgG levels is gradual, with lower median values in the infection naïve cohort even 7-8 months after vaccination, compared to the previously infected cohort (0.7 AU/ml versus 1.29 AU/ml, p = 0.006). Administration of a booster dose yielded higher median IgG antibody levels than post second dose in the infection naïve group and comparable levels in the previously infected group.


Subject(s)
COVID-19 , Vaccines , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Health Personnel , Humans , Immunoglobulin G , Romania , SARS-CoV-2 , Vaccination
13.
Eur Radiol ; 32(7): 4457-4467, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35247089

ABSTRACT

OBJECTIVES: Lung cancer (LC) kills more people than any other cancer in Hungary. Hence, there is a clear rationale for considering a national screening program. The HUNCHEST pilot program primarily aimed to investigate the feasibility of a population-based LC screening in Hungary, and determine the incidence and LC probability of solitary pulmonary nodules. METHODS: A total of 1890 participants were assigned to undergo low-dose CT (LDCT) screening, with intervals of 1 year between procedures. Depending on the volume, growth, and volume doubling time (VDT), screenings were defined as negative, indeterminate, or positive. Non-calcified lung nodules with a volume > 500 mm3 and/or a VDT < 400 days were considered positive. LC diagnosis was based on histology. RESULTS: At baseline, the percentage of negative, indeterminate, and positive tests was 81.2%, 15.1%, and 3.7%, respectively. The frequency of positive and indeterminate LDCT results was significantly higher in current smokers (vs. non-smokers or former smokers; p < 0.0001) and in individuals with COPD (vs. those without COPD, p < 0.001). In the first screening round, 1.2% (n = 23) of the participants had a malignant lesion, whereas altogether 1.5% (n = 29) of the individuals were diagnosed with LC. The overall positive predictive value of the positive tests was 31.6%. Most lung malignancies were diagnosed at an early stage (86.2% of all cases). CONCLUSIONS: In terms of key characteristics, our prospective cohort study appears consistent to that of comparable studies. Altogether, the results of the HUNCHEST pilot program suggest that LDCT screening may facilitate early diagnosis and thus curative-intent treatment in LC. KEY POINTS: • The HUNCHEST pilot study is the first nationwide low-dose CT screening program in Hungary. • In the first screening round, 1.2% of the participants had a malignant lesion, whereas altogether 1.5% of the individuals were diagnosed with lung cancer. • The overall positive predictive value of the positive tests in the HUNCHEST screening program was 31.6%.


Subject(s)
Lung Neoplasms , Pulmonary Disease, Chronic Obstructive , Early Detection of Cancer/methods , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/epidemiology , Mass Screening , Pilot Projects , Prospective Studies , Tomography, X-Ray Computed/methods
14.
Int J Mol Sci ; 22(21)2021 Oct 24.
Article in English | MEDLINE | ID: mdl-34768886

ABSTRACT

Exposure to heavy metals, including arsenic and cadmium, is associated with neurodegenerative disorders such as Parkinson's disease. However, the mechanistic details of how these metals contribute to pathogenesis are not well understood. To search for underlying mechanisms involving α-synuclein, the protein that forms amyloids in Parkinson's disease, we here assessed the effects of arsenic and cadmium on α-synuclein amyloid formation in vitro and in Saccharomyces cerevisiae (budding yeast) cells. Atomic force microscopy experiments with acetylated human α-synuclein demonstrated that amyloid fibers formed in the presence of the metals have a different fiber pitch compared to those formed without metals. Both metal ions become incorporated into the amyloid fibers, and cadmium also accelerated the nucleation step in the amyloid formation process, likely via binding to intermediate species. Fluorescence microscopy analyses of yeast cells expressing fluorescently tagged α-synuclein demonstrated that arsenic and cadmium affected the distribution of α-synuclein aggregates within the cells, reduced aggregate clearance, and aggravated α-synuclein toxicity. Taken together, our in vitro data demonstrate that interactions between these two metals and α-synuclein modulate the resulting amyloid fiber structures, which, in turn, might relate to the observed effects in the yeast cells. Whilst our study advances our understanding of how these metals affect α-synuclein biophysics, further in vitro characterization as well as human cell studies are desired to fully appreciate their role in the progression of Parkinson's disease.


Subject(s)
Metals, Heavy/toxicity , Neurodegenerative Diseases , alpha-Synuclein/metabolism , Amyloid/metabolism , Arsenites/toxicity , Cadmium/toxicity , Cell Line/metabolism , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/metabolism , Parkinson Disease/etiology , Parkinson Disease/metabolism , Saccharomyces cerevisiae/metabolism , alpha-Synuclein/drug effects
15.
Biophys J ; 120(16): 3374-3381, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34242594

ABSTRACT

The crowdedness of living cells, hundreds of milligrams per milliliter of macromolecules, may affect protein folding, function, and misfolding. Still, such processes are most often studied in dilute solutions in vitro. To assess consequences of the in vivo milieu, we here investigated the effects of macromolecular crowding on the amyloid fiber formation reaction of α-synuclein, the amyloidogenic protein in Parkinson's disease. For this, we performed spectroscopic experiments probing individual steps of the reaction as a function of the macromolecular crowding agent Ficoll70, which is an inert sucrose-based polymer that provides excluded-volume effects. The experiments were performed at neutral pH at quiescent conditions to avoid artifacts due to shaking and glass beads (typical conditions for α-synuclein), using amyloid fiber seeds to initiate reactions. We find that both primary nucleation and fiber elongation steps during α-synuclein amyloid formation are accelerated by the presence of 140 and 280 mg/mL Ficoll70. Moreover, in the presence of Ficoll70 at neutral pH, secondary nucleation appears favored, resulting in faster overall α-synuclein amyloid formation. In contrast, sucrose, a small-molecule osmolyte and building block of Ficoll70, slowed down α-synuclein amyloid formation. The ability of cell environments to modulate reaction kinetics to a large extent, such as severalfold faster individual steps in α-synuclein amyloid formation, is an important consideration for biochemical reactions in living systems.


Subject(s)
Parkinson Disease , alpha-Synuclein , Amyloid , Humans , Kinetics , Protein Folding
16.
Mol Ther Methods Clin Dev ; 20: 218-226, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33426148

ABSTRACT

We developed an orally administered, engineered, bacterium-based, RNA interference-mediated therapeutic method to significantly reduce the symptoms in the most frequently used animal model of inflammatory bowel disease. This bacterium-mediated RNA interference strategy was based on the genomically stable, non-pathogenic E. coli MDS42 strain, which was engineered to constitutively produce invasin and the listeriolysin O cytolysin. These proteins enabled the bacteria first to invade the colon epithelium and then degrade in the phagosome. This allowed the delivery of a plasmid encoding small hairpin RNA (shRNA) targeting tumor necrosis factor (TNF) into the cytoplasm of the target cells. The expression levels of TNF and other cytokines significantly decreased upon this treatment in dextran sulfate sodium (DSS)-induced colitis, and the degree of inflammation was significantly reduced. With further safety modifications this method could serve as a safe and side effect-free alternative to biologicals targeting TNF or other inflammatory mediators.

17.
QRB Discov ; 2: e2, 2021.
Article in English | MEDLINE | ID: mdl-37529678

ABSTRACT

Although the consequences of the crowded cell environments may affect protein folding, function and misfolding reactions, these processes are often studied in dilute solutions in vitro. We here used biophysical experiments to investigate the amyloid fibril formation process of the fish protein apo-ß-parvalbumin in solvent conditions that mimic steric and solvation aspects of the in vivo milieu. Apo-ß-parvalbumin is a folded protein that readily adopts an amyloid state via a nucleation-elongation mechanism. Aggregation experiments in the presence of macromolecular crowding agents (probing excluded volume, entropic effects) as well as small molecule osmolytes (probing solvation, enthalpic effects) revealed that both types of agents accelerate overall amyloid formation, but the elongation step was faster with macromolecular crowding agents but slower in the presence of osmolytes. The observations can be explained by the steric effects of excluded volume favoring assembled states and that amyloid nucleation does not involve monomer unfolding. In contrast, the solvation effects due to osmolyte presence promote nucleation but not elongation. Therefore, the amyloid-competent nuclei must be compact with less osmolytes excluded from the surface than either the folded monomers or amyloid fibers. We conclude that, in contrast to other amyloidogenic folded proteins, amyloid formation of apo-ß-parvalbumin is accelerated by crowded cell-like conditions due to a nucleation process that does not involve large-scale protein unfolding.

18.
Sci Rep ; 10(1): 16369, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33004835

ABSTRACT

Lytic polysaccharide monooxygenase (LPMO) and copper binding protein CopC share a similar mononuclear copper site. This site is defined by an N-terminal histidine and a second internal histidine side chain in a configuration called the histidine brace. To understand better the determinants of reactivity, the biochemical and structural properties of a well-described cellulose-specific LPMO from Thermoascus aurantiacus (TaAA9A) is compared with that of CopC from Pseudomonas fluorescens (PfCopC) and with the LPMO-like protein Bim1 from Cryptococcus neoformans. PfCopC is not reduced by ascorbate but is a very strong Cu(II) chelator due to residues that interacts with the N-terminus. This first biochemical characterization of Bim1 shows that it is not redox active, but very sensitive to H2O2, which accelerates the release of Cu ions from the protein. TaAA9A oxidizes ascorbate at a rate similar to free copper but through a mechanism that produce fewer reactive oxygen species. These three biologically relevant examples emphasize the diversity in how the proteinaceous environment control reactivity of Cu with O2.


Subject(s)
Copper/metabolism , Histidine/metabolism , Models, Molecular , Oxygenases/metabolism , Escherichia coli , Hydrogen Peroxide/metabolism , Magnetic Resonance Spectroscopy/methods , Oxidation-Reduction
19.
Biomolecules ; 10(6)2020 06 18.
Article in English | MEDLINE | ID: mdl-32570820

ABSTRACT

Plaque deposits composed of amyloid-ß (Aß) fibrils are pathological hallmarks of Alzheimer's disease (AD). Although copper ion dyshomeostasis is apparent in AD brains and copper ions are found co-deposited with Aß peptides in patients' plaques, the molecular effects of copper ion interactions and redox-state dependence on Aß aggregation remain elusive. By combining biophysical and theoretical approaches, we here show that Cu2+ (oxidized) and Cu+ (reduced) ions have opposite effects on the assembly kinetics of recombinant Aß(1-42) into amyloid fibrils in vitro. Cu2+ inhibits both the unseeded and seeded aggregation of Aß(1-42) at pH 8.0. Using mathematical models to fit the kinetic data, we find that Cu2+ prevents fibril elongation. The Cu2+-mediated inhibition of Aß aggregation shows the largest effect around pH 6.0 but is lost at pH 5.0, which corresponds to the pH in lysosomes. In contrast to Cu2+, Cu+ ion binding mildly catalyzes the Aß(1-42) aggregation via a mechanism that accelerates primary nucleation, possibly via the formation of Cu+-bridged Aß(1-42) dimers. Taken together, our study emphasizes redox-dependent copper ion effects on Aß(1-42) aggregation and thereby provides further knowledge of putative copper-dependent mechanisms resulting in AD.


Subject(s)
Amyloid beta-Peptides/antagonists & inhibitors , Copper/pharmacology , Peptide Fragments/antagonists & inhibitors , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Copper/chemistry , Hydrogen-Ion Concentration , Ions/chemistry , Ions/pharmacology , Oxidation-Reduction , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Aggregates/drug effects , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
20.
J Parkinsons Dis ; 10(3): 819-830, 2020.
Article in English | MEDLINE | ID: mdl-32538869

ABSTRACT

It was recently shown (Sampson et al., Elife9, 2020) that an amyloidogenic protein, CsgA, present in E. coli biofilms in the gut can trigger Parkinson's disease in mice. This study emphasizes the possible role of the gut microbiome in modulation (and even initiation) of human neurodegenerative disorders, such as Parkinson's disease. As the CsgA protein was found to accelerate alpha-synuclein (the key amyloidogenic protein in Parkinson's disease) amyloid formation in vitro, this result suggests that also other amyloidogenic proteins from gut bacteria, and even from the diet (such as stable allergenic proteins), may be able to affect human protein conformations and thereby modulate amyloid-related diseases. In this review, we summarize what has been reported in terms of in vitro cross-reactivity studies between alpha-synuclein and other amyloidogenic human and non-human proteins. It becomes clear from the limited data that exist that there is a fine line between acceleration and inhibition, but that cross-reactivity is widespread, and it is more common for other proteins (among the studied cases) to accelerate alpha-synuclein amyloid formation than to block it. It is of high importance to expand investigations of cross-reactivity between amyloidogenic proteins to both reveal underlying mechanisms and links between human diseases, as well as to develop new treatments that may be based on an altered gut microbiome.


Subject(s)
Amyloidogenic Proteins/metabolism , Neurodegenerative Diseases/metabolism , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Amyloid/metabolism , Animals , Humans , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...