Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
JAMA Netw Open ; 7(5): e2410746, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38728028

ABSTRACT

Importance: Admissions to the pediatric intensive care unit (PICU) due to bronchiolitis are increasing. Whether this increase is associated with changes in noninvasive respiratory support practices is unknown. Objective: To assess whether the number of PICU admissions for bronchiolitis between 2013 and 2022 was associated with changes in the use of high-flow nasal cannula (HFNC), noninvasive ventilation (NIV), and invasive mechanical ventilation (IMV) and to identify factors associated with HFNC and NIV success and failure. Design, Setting, and Participants: This cross-sectional study examined encounter data from the Virtual Pediatric Systems database on annual PICU admissions for bronchiolitis and ventilation practices among patients aged younger than 2 years admitted to 27 PICUs between January 1, 2013, and December 31, 2022. Use of HFNC and NIV was defined as successful if patients were weaned to less invasive support (room air or low-flow nasal cannula for HFNC; room air, low-flow nasal cannula, or HFNC for NIV). Main Outcomes and Measures: The main outcome was the number of PICU admissions for bronchiolitis requiring the use of HFNC, NIV, or IMV. Linear regression was used to analyze the association between admission year and absolute numbers of encounters stratified by the maximum level of respiratory support required. Multivariable logistic regression was used to analyze factors associated with HFNC and NIV success and failure (defined as not meeting the criteria for success). Results: Included in the analysis were 33 816 encounters for patients with bronchiolitis (20 186 males [59.7%]; 1910 patients [5.6%] aged ≤28 days and 31 906 patients [94.4%] aged 29 days to <2 years) treated at 27 PICUs from 2013 to 2022. A total of 7615 of 15 518 patients (49.1%) had respiratory syncytial virus infection and 1522 of 33 816 (4.5%) had preexisting cardiac disease. Admissions to the PICU increased by 350 (95% CI, 170-531) encounters annually. When data were grouped by the maximum level of respiratory support required, HFNC use increased by 242 (95% CI, 139-345) encounters per year and NIV use increased by 126 (95% CI, 64-189) encounters per year. The use of IMV did not significantly change (10 [95% CI, -11 to 31] encounters per year). In all, 22 381 patients (81.8%) were successfully weaned from HFNC to low-flow oxygen therapy or room air, 431 (1.6%) were restarted on HFNC, 3057 (11.2%) were escalated to NIV, and 1476 (5.4%) were escalated to IMV or extracorporeal membrane oxygenation (ECMO). Successful use of HFNC increased from 820 of 1027 encounters (79.8%) in 2013 to 3693 of 4399 encounters (84.0%) in 2022 (P = .002). In all, 8476 patients (81.5%) were successfully weaned from NIV, 787 (7.6%) were restarted on NIV, and 1135 (10.9%) were escalated to IMV or ECMO. Success with NIV increased from 224 of 306 encounters (73.2%) in 2013 to 1335 of 1589 encounters (84.0%) in 2022 (P < .001). In multivariable logistic regression, lower weight, higher Pediatric Risk of Mortality III score, cardiac disease, and PICU admission from outside the emergency department were associated with greater odds of HFNC and NIV failure. Conclusions and Relevance: Findings of this cross-sectional study of patients aged younger than 2 years admitted for bronchiolitis suggest there was a 3-fold increase in PICU admissions between 2013 and 2022 associated with a 4.8-fold increase in HFNC use and a 5.8-fold increase in NIV use. Further research is needed to standardize approaches to HFNC and NIV support in bronchiolitis to reduce resource strain.


Subject(s)
Bronchiolitis , Intensive Care Units, Pediatric , Humans , Bronchiolitis/therapy , Bronchiolitis/epidemiology , Intensive Care Units, Pediatric/statistics & numerical data , Infant , Male , Cross-Sectional Studies , Female , Noninvasive Ventilation/statistics & numerical data , Noninvasive Ventilation/methods , Respiration, Artificial/statistics & numerical data , Respiration, Artificial/methods , Infant, Newborn , Oxygen Inhalation Therapy/statistics & numerical data , Oxygen Inhalation Therapy/methods , Hospitalization/statistics & numerical data
2.
Pediatr Crit Care Med ; 25(5): 483-485, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38695700
3.
Am J Emerg Med ; 80: 149-155, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38608467

ABSTRACT

OBJECTIVE: The shock index (SI), the ratio of heart rate to systolic blood pressure, is a clinical tool for assessing injury severity. Age-adjusted SI models may improve predictive value for injured children in the out-of-hospital setting. We sought to characterize the proportion of children in the prehospital setting with an abnormal SI using established criteria, describe the age-based distribution of SI among injured children, and determine prehospital interventions by SI. METHODS: We performed a multi-agency retrospective cross-sectional study of children (<18 years) in the prehospital setting with a scene encounter for suspected trauma and transported to the hospital between 2018 and 2022 using the National Emergency Medical Services (EMS) Information System datasets. Our exposure of interest was the first calculated SI. We identified the proportion of children with an abnormal SI when using the SI, pediatric age-adjusted (SIPA); and the pediatric SI (PSI) criteria. We developed and internally validated an age-based distributional model for the SI using generalized additive models for location, scale, and shape to describe the age-based distribution of the SI as a centile or Z-score. We evaluated EMS interventions (basic airway interventions, advanced airway interventions, cardiac interventions, vascular access, intravenous fluids, and vasopressor use) in relation to both the SIPA, PSI, and distributional SI values. RESULTS: We analyzed 1,007,863 pediatric EMS trauma encounters (55.0% male, median age 13 years [IQR, 8-16 years]). The most common dispatch complaint was for traffic/transport related injury (32.9%). When using the PSI and SIPA, 13.1% and 16.3% were classified as having an abnormal SI, respectively. There were broad differences in the percentage of encounters classified as having an abnormal SI across the age range, varying from 5.1 to 22.8% for SIPA and 3.7-20.1% for PSI. The SIPA values ranged from the 75th to 95th centiles, while the PSI corresponded to an SI greater than the 90th centile, except in older children. The centile distribution for SI declined during early childhood and stabilized during adolescence and demonstrated a difference of <0.1% at cutoff values. An abnormal PSI, SIPA and higher SI centiles (>90th centile and >95th centiles) were associated with interventions related to basic and advanced airway management, cardiac procedures, vascular access, and provision of intravenous fluids occurred with greater frequency at higher SI centiles. Some procedures, including airway management and vascular access, had a smaller peak at lower (<10th) centiles. DISCUSSION: We describe the empiric distribution of the pediatric SI across the age range, which may overcome limitations of extant criteria in identifying patients with shock in the prehospital setting. Both high and low SI values were associated with important, potentially lifesaving EMS interventions. Future work may allow for more precise identification of children with significant injury using cutpoint analysis paired to outcome-based criteria. These may additionally be combined with other physiologic and mechanistic criteria to assist in triage decisions.

5.
Ann Am Thorac Soc ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507645

ABSTRACT

RATIONALE: Adult and pediatric studies provide conflicting data whether post-cardiac arrest hypoxemia, hyperoxemia, hypercapnia and/or hypocapnia are associated with worse outcomes. OBJECTIVES: Determine if post-arrest hypoxemia or post-arrest hyperoxemia are associated with lower rates of survival to hospital discharge compared to post-arrest normoxemia, and if post-arrest hypocapnia or hypercapnia are associated with lower rates of survival compared to post-arrest normocapnia. METHODS: Embedded prospective observational study during a multi-center interventional cardiopulmonary resuscitation trial from 2016-2021. Patients ≤18 years and ≥37 weeks corrected gestational age who received chest compressions for cardiac arrest in one of 18 ICUs were included. Exposures during the first 24 hours post-arrest were hypoxemia, hyperoxemia, or normoxemia defined as lowest PaO2 <60mmHg, highest PaO2 ≥200mmHg, or every PaO2 60-199mmHg, respectively, and hypocapnia, hypercapnia, or normocapnia defined as lowest PaCO2 <30mmHg, highest PaCO2 ≥50mmHg, or every PaCO2 30-49mmHg, respectively. Associations of oxygenation and carbon dioxide group with survival to hospital discharge were assessed using Poisson regression with robust error estimates. MEASUREMENTS AND MAIN RESULTS: The hypoxemia group was less likely to survive to hospital discharge compared with the normoxemia group (aRR 0.71, 0.58-0.87), whereas the hyperoxemia group survival did not differ from the normoxemia group (aRR 1.0, 0.87-1.15). The hypercapnia group was less likely to survive to hospital discharge compared with the normocapnia group (aRR 0.74, 0.64-0.84), whereas the hypocapnia group survival did not differ from the normocapnia group (aRR 0.91, 0.74-1.12). CONCLUSIONS: Post-arrest hypoxemia and hypercapnia were each associated with lower rates of survival to hospital discharge.

6.
Pediatr Crit Care Med ; 25(5): 390-395, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38329377

ABSTRACT

OBJECTIVES: Mechanical ventilation (MV) is pervasive among critically ill children. We sought to validate a computerized physiologic equation to predict minute ventilation requirements in children and test its performance against clinician actions in an in silico trial. DESIGN: Retrospective, electronic medical record linkage, cohort study. SETTING: Quaternary PICU. PATIENTS: Patients undergoing invasive MV, serial arterial blood gas (ABG) analysis within 1-6 hours, and pharmacologic neuromuscular blockade (NMB). MEASUREMENTS AND MAIN RESULTS: ABG values were filtered to those occurring during periods of NMB. Simultaneous ABG and minute ventilation data were linked to predict serial Pa co2 and pH values using previously published physiologic equations. There were 15,121 included ABGs across 500 encounters among 484 patients, with a median (interquartile range [IQR]) of 20 (10-43) ABGs per encounter at a duration of 3.6 (2.1-4.2) hours. The median (IQR) Pa co2 prediction error was 0.00 (-3.07 to 3.00) mm Hg. In Bland-Altman analysis, the mean error was -0.10 mm Hg (95% CI, -0.21 to 0.01 mm Hg). A nested, in silico trial of ABGs meeting criteria for weaning (respiratory alkalosis) or escalation (respiratory acidosis), compared the performance of recommended ventilator changes versus clinician decisions. There were 1,499 of 15,121 ABGs (9.9%) among 278 of 644 (43.2%) encounters included in the trial. Calculated predictions were favorable to clinician actions in 1124 of 1499 ABGs (75.0%), equivalent to clinician choices in 26 of 1499 ABGs (1.7%), and worse than clinician decisions in 349 of 1499 ABGs (23.3%). Calculated recommendations were favorable to clinician decisions in sensitivity analyses limiting respiratory rate, analyzing only when clinicians made changes, excluding asthma, and excluding acute respiratory distress syndrome. CONCLUSIONS: A computerized equation to predict minute ventilation requirements outperformed clinicians' ventilator adjustments in 75% of ABGs from critically ill children in this retrospective analysis. Prospective validation studies are needed.


Subject(s)
Blood Gas Analysis , Critical Illness , Intensive Care Units, Pediatric , Respiration, Artificial , Humans , Retrospective Studies , Critical Illness/therapy , Respiration, Artificial/methods , Female , Male , Child, Preschool , Child , Infant , Adolescent , Neuromuscular Blockade/methods , Carbon Dioxide/blood
7.
Pediatrics ; 153(Suppl 2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300003

ABSTRACT

This article, focused on the current and future pediatric critical care medicine (PCCM) workforce, is part of a supplement in Pediatrics anticipating the future supply of the pediatric subspecialty workforce. It draws on information available in the literature, data from the American Board of Pediatrics, and findings from a model that estimates the future supply of pediatric subspecialists developed by the American Board of Pediatrics Foundation in collaboration with the Carolina Workforce Research Center at the University of North Carolina at Chapel Hill's Cecil G. Sheps Center for Health Services Research and Strategic Modeling and Analysis Ltd. A brief history of the field of PCCM is provided, followed by an in-depth examination of the current PCCM workforce and a subsequent evaluation of workforce forecasts from 2020 to 2040. Under baseline conditions, the PCCM workforce is expected to increase by 105% during the forecasted period, more than any other pediatric subspecialty. Forecasts are modeled under a variety of multifactorial conditions meant to simulate the effects of changes to the supply of PCCM subspecialists, with only modest changes observed. Future PCCM workforce demand is unclear, although some suggest an oversupply may exist and that market forces may correct this. The findings generate important questions regarding the future state of the PCCM workforce and should be used to guide trainees considering a PCCM career, subspecialty leaders responsible for hosting training programs, staffing ICUs, and governing bodies that oversee training program accreditation and subspecialist certification.


Subject(s)
Accreditation , Child Health , Humans , Child , Certification , Workforce , Critical Care
8.
JAMA ; 331(8): 665-674, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38245889

ABSTRACT

Importance: Sepsis is a leading cause of death among children worldwide. Current pediatric-specific criteria for sepsis were published in 2005 based on expert opinion. In 2016, the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) defined sepsis as life-threatening organ dysfunction caused by a dysregulated host response to infection, but it excluded children. Objective: To update and evaluate criteria for sepsis and septic shock in children. Evidence Review: The Society of Critical Care Medicine (SCCM) convened a task force of 35 pediatric experts in critical care, emergency medicine, infectious diseases, general pediatrics, nursing, public health, and neonatology from 6 continents. Using evidence from an international survey, systematic review and meta-analysis, and a new organ dysfunction score developed based on more than 3 million electronic health record encounters from 10 sites on 4 continents, a modified Delphi consensus process was employed to develop criteria. Findings: Based on survey data, most pediatric clinicians used sepsis to refer to infection with life-threatening organ dysfunction, which differed from prior pediatric sepsis criteria that used systemic inflammatory response syndrome (SIRS) criteria, which have poor predictive properties, and included the redundant term, severe sepsis. The SCCM task force recommends that sepsis in children be identified by a Phoenix Sepsis Score of at least 2 points in children with suspected infection, which indicates potentially life-threatening dysfunction of the respiratory, cardiovascular, coagulation, and/or neurological systems. Children with a Phoenix Sepsis Score of at least 2 points had in-hospital mortality of 7.1% in higher-resource settings and 28.5% in lower-resource settings, more than 8 times that of children with suspected infection not meeting these criteria. Mortality was higher in children who had organ dysfunction in at least 1 of 4-respiratory, cardiovascular, coagulation, and/or neurological-organ systems that was not the primary site of infection. Septic shock was defined as children with sepsis who had cardiovascular dysfunction, indicated by at least 1 cardiovascular point in the Phoenix Sepsis Score, which included severe hypotension for age, blood lactate exceeding 5 mmol/L, or need for vasoactive medication. Children with septic shock had an in-hospital mortality rate of 10.8% and 33.5% in higher- and lower-resource settings, respectively. Conclusions and Relevance: The Phoenix sepsis criteria for sepsis and septic shock in children were derived and validated by the international SCCM Pediatric Sepsis Definition Task Force using a large international database and survey, systematic review and meta-analysis, and modified Delphi consensus approach. A Phoenix Sepsis Score of at least 2 identified potentially life-threatening organ dysfunction in children younger than 18 years with infection, and its use has the potential to improve clinical care, epidemiological assessment, and research in pediatric sepsis and septic shock around the world.


Subject(s)
Sepsis , Shock, Septic , Humans , Child , Shock, Septic/mortality , Multiple Organ Failure/diagnosis , Multiple Organ Failure/etiology , Consensus , Sepsis/mortality , Systemic Inflammatory Response Syndrome/diagnosis , Organ Dysfunction Scores
9.
JAMA ; 331(8): 675-686, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38245897

ABSTRACT

Importance: The Society of Critical Care Medicine Pediatric Sepsis Definition Task Force sought to develop and validate new clinical criteria for pediatric sepsis and septic shock using measures of organ dysfunction through a data-driven approach. Objective: To derive and validate novel criteria for pediatric sepsis and septic shock across differently resourced settings. Design, Setting, and Participants: Multicenter, international, retrospective cohort study in 10 health systems in the US, Colombia, Bangladesh, China, and Kenya, 3 of which were used as external validation sites. Data were collected from emergency and inpatient encounters for children (aged <18 years) from 2010 to 2019: 3 049 699 in the development (including derivation and internal validation) set and 581 317 in the external validation set. Exposure: Stacked regression models to predict mortality in children with suspected infection were derived and validated using the best-performing organ dysfunction subscores from 8 existing scores. The final model was then translated into an integer-based score used to establish binary criteria for sepsis and septic shock. Main Outcomes and Measures: The primary outcome for all analyses was in-hospital mortality. Model- and integer-based score performance measures included the area under the precision recall curve (AUPRC; primary) and area under the receiver operating characteristic curve (AUROC; secondary). For binary criteria, primary performance measures were positive predictive value and sensitivity. Results: Among the 172 984 children with suspected infection in the first 24 hours (development set; 1.2% mortality), a 4-organ-system model performed best. The integer version of that model, the Phoenix Sepsis Score, had AUPRCs of 0.23 to 0.38 (95% CI range, 0.20-0.39) and AUROCs of 0.71 to 0.92 (95% CI range, 0.70-0.92) to predict mortality in the validation sets. Using a Phoenix Sepsis Score of 2 points or higher in children with suspected infection as criteria for sepsis and sepsis plus 1 or more cardiovascular point as criteria for septic shock resulted in a higher positive predictive value and higher or similar sensitivity compared with the 2005 International Pediatric Sepsis Consensus Conference (IPSCC) criteria across differently resourced settings. Conclusions and Relevance: The novel Phoenix sepsis criteria, which were derived and validated using data from higher- and lower-resource settings, had improved performance for the diagnosis of pediatric sepsis and septic shock compared with the existing IPSCC criteria.


Subject(s)
Sepsis , Shock, Septic , Humans , Child , Shock, Septic/mortality , Multiple Organ Failure , Retrospective Studies , Organ Dysfunction Scores , Sepsis/complications , Hospital Mortality
10.
Pediatr Crit Care Med ; 25(3): 250-258, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38088760

ABSTRACT

OBJECTIVES: Children who suffer traumatic brain injury (TBI) are at high risk of morbidity and mortality. We hypothesized that in patients with TBI, the abusive head trauma (AHT) mechanism vs. accidental TBI (aTBI) would be associated with higher frequency of new functional impairment between baseline and later follow-up. DESIGN: Retrospective single center cohort study. SETTING AND PATIENTS: Children younger than 3 years old admitted with TBI to the PICU at a level 1 trauma center between 2014 and 2019. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Patient characteristics, TBI mechanism, and Functional Status Scale (FSS) scores at baseline, hospital discharge, short-term (median, 10 mo [interquartile range 3-12 mo]), and long-term (median, 4 yr [3-6 yr]) postdischarge were abstracted from the electronic health record. New impairment was defined as an increase in FSS greater than 1 from baseline. Patients who died were assigned the highest score (30). Multivariable logistic regression was performed to determine the association between TBI mechanism with new impairment. Over 6 years, there were 460 TBI children (170 AHT, 290 aTBI), of which 13 with AHT and four with aTBI died. Frequency of new impairment by follow-up interval, in AHT vs. aTBI patients, were as follows: hospital discharge (42/157 [27%] vs. 27/286 [9%]; p < 0.001), short-term (42/153 [27%] vs. 26/259 [10%]; p < 0.001), and long-term (32/114 [28%] vs. 18/178 [10%]; p < 0.001). Sensory, communication, and motor domains were worse in AHT patients at the short- and long-term timepoint. On multivariable analysis, AHT mechanism was associated with greater odds (odds ratio [95% CI]) of poor outcome (death and new impairment) at hospital discharge (4.4 [2.2-8.9]), short-term (2.7 [1.5-4.9]), and long-term timepoints (2.4 [1.2-4.8]; p < 0.05). CONCLUSIONS: In patients younger than 3 years old admitted to the PICU after TBI, the AHT mechanism-vs. aTBI-is associated with greater odds of poor outcome in the follow-up period through to ~5 years postdischarge. New impairment occurred in multiple domains and only AHT patients further declined in FSS over time.


Subject(s)
Brain Injuries, Traumatic , Child Abuse , Craniocerebral Trauma , Child , Humans , Infant , Child, Preschool , Retrospective Studies , Patient Discharge , Cohort Studies , Aftercare , Brain Injuries, Traumatic/complications , Hospitals , Intensive Care Units, Pediatric
11.
Pediatr Crit Care Med ; 25(4): 312-322, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38088765

ABSTRACT

OBJECTIVES: Cannulation for extracorporeal membrane oxygenation during active extracorporeal cardiopulmonary resuscitation (ECPR) is a method to rescue patients refractory to standard resuscitation. We hypothesized that early arrest hemodynamics and end-tidal C o2 (ET co2 ) are associated with survival to hospital discharge with favorable neurologic outcome in pediatric ECPR patients. DESIGN: Preplanned, secondary analysis of pediatric Utstein, hemodynamic, and ventilatory data in ECPR patients collected during the 2016-2021 Improving Outcomes from Pediatric Cardiac Arrest study; the ICU-RESUScitation Project (ICU-RESUS; NCT02837497). SETTING: Eighteen ICUs participated in ICU-RESUS. PATIENTS: There were 97 ECPR patients with hemodynamic waveforms during cardiopulmonary resuscitation. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Overall, 71 of 97 patients (73%) were younger than 1 year old, 82 of 97 (85%) had congenital heart disease, and 62 of 97 (64%) were postoperative cardiac surgical patients. Forty of 97 patients (41%) survived with favorable neurologic outcome. We failed to find differences in diastolic or systolic blood pressure, proportion achieving age-based target diastolic or systolic blood pressure, or chest compression rate during the initial 10 minutes of CPR between patients who survived with favorable neurologic outcome and those who did not. Thirty-five patients had ET co2 data; of 17 survivors with favorable neurologic outcome, four of 17 (24%) had an average ET co2 less than 10 mm Hg and two (12%) had a maximum ET co2 less than 10 mm Hg during the initial 10 minutes of resuscitation. CONCLUSIONS: We did not identify an association between early hemodynamics achieved by high-quality CPR and survival to hospital discharge with favorable neurologic outcome after pediatric ECPR. Candidates for ECPR with ET co2 less than 10 mm Hg may survive with favorable neurologic outcome.


Subject(s)
Cardiopulmonary Resuscitation , Heart Arrest , Infant , Child , Humans , Cardiopulmonary Resuscitation/methods , Carbon Dioxide , Heart Arrest/therapy , Hemodynamics , Intensive Care Units , Retrospective Studies
12.
Pediatr Crit Care Med ; 25(4): e193-e204, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38059739

ABSTRACT

OBJECTIVES: Sedation and analgesia for infants and children requiring mechanical ventilation in the PICU is uniquely challenging due to the wide spectrum of ages, developmental stages, and pathophysiological processes encountered. Studies evaluating the safety and efficacy of sedative and analgesic management in pediatric patients have used heterogeneous methodologies. The Sedation Consortium on Endpoints and Procedures for Treatment, Education, and Research (SCEPTER) IV hosted a series of multidisciplinary meetings to establish consensus statements for future clinical study design and implementation as a guide for investigators studying PICU sedation and analgesia. DESIGN: Twenty-five key elements framed as consensus statements were developed in five domains: study design, enrollment, protocol, outcomes and measurement instruments, and future directions. SETTING: A virtual meeting was held on March 2-3, 2022, followed by an in-person meeting in Washington, DC, on June 15-16, 2022. Subsequent iterative online meetings were held to achieve consensus. SUBJECTS: Fifty-one multidisciplinary, international participants from academia, industry, the U.S. Food and Drug Administration, and family members of PICU patients attended the virtual and in-person meetings. Participants were invited based on their background and experience. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Common themes throughout the SCEPTER IV consensus statements included using coordinated multidisciplinary and interprofessional teams to ensure culturally appropriate study design and diverse patient enrollment, obtaining input from PICU survivors and their families, engaging community members, and using developmentally appropriate and validated instruments for assessments of sedation, pain, iatrogenic withdrawal, and ICU delirium. CONCLUSIONS: These SCEPTER IV consensus statements are comprehensive and may assist investigators in the design, enrollment, implementation, and dissemination of studies involving sedation and analgesia of PICU patients requiring mechanical ventilation. Implementation may strengthen the rigor and reproducibility of research studies on PICU sedation and analgesia and facilitate the synthesis of evidence across studies to improve the safety and quality of care for PICU patients.


Subject(s)
Analgesia , Critical Illness , Infant , Child , Humans , Critical Illness/therapy , Reproducibility of Results , Analgesia/methods , Pain , Respiration, Artificial , Hypnotics and Sedatives/therapeutic use
13.
Acad Emerg Med ; 31(3): 230-238, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37943118

ABSTRACT

BACKGROUND: Vital signs are frequently used in pediatric prehospital assessments and guide protocol utilization. Common pediatric vital sign classification criteria identify >80% of children in the prehospital setting as having abnormal vital signs, though few receive lifesaving interventions (LSIs). We sought to identify data-driven thresholds for abnormal vital signs by evaluating their association with prehospital LSIs. METHODS: We evaluated prehospital care records for children (<18 years) transported to the hospital during 2022 from a large, national repository of emergency medical services (EMS) patient encounters. Predictors of interest were heart rate (HR), respiratory rate (RR), systolic blood pressure (SBP), and pulse oximetry. HR, RR, and SBP were converted to Z-scores using age-based distributional models. Our outcome was potential LSIs, defined as performance of selected respiratory procedures, resuscitative interventions, or medication administrations. Using cut point analysis, we identified higher specificity (maximal specificity with a minimum of 25% sensitivity) and higher sensitivity (maximal sensitivity with a minimum of 25% specificity) ranges for each vital sign and evaluated measures of diagnostic accuracy. RESULTS: We included 987,515 children (median age 10 years, IQR 2-15 years). An LSI occurred in 4.3% (2.1% with respiratory procedures, 1.2% with resuscitative interventions, and 2.0% with medication administration). HR, RR, and SBP demonstrated a U-shaped association with LSIs. Specificities ranged from 84.1% to 93.7% for higher specificity criteria, with RR demonstrating the best performance (sensitivity 84.6%, specificity 27.0%). Sensitivities ranged from 62.3% to 84.4% for higher sensitivity criteria. CONCLUSIONS: Cut points for pediatric vital signs were associated with LSIs. Specific age-adjusted ranges can identify children at higher and lower risk for receipt of LSI. These ranges may be combined with other objective measures to improve the assessment of children in the prehospital setting, assist in optimizing protocol utilization, improve transport decision making, and guide destination selection.


Subject(s)
Emergency Medical Services , Wounds and Injuries , Humans , Child , Vital Signs/physiology , Emergency Medical Services/methods , Blood Pressure , Respiratory Rate , Heart Rate , Retrospective Studies
14.
Pediatr Crit Care Med ; 25(1): 4-14, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37678381

ABSTRACT

OBJECTIVES: To assess associations between outcome and cardiopulmonary resuscitation (CPR) quality for in-hospital cardiac arrest (IHCA) in children with medical cardiac, surgical cardiac, or noncardiac disease. DESIGN: Secondary analysis of a multicenter cluster randomized trial, the ICU-RESUScitation Project (NCT02837497, 2016-2021). SETTING: Eighteen PICUs. PATIENTS: Children less than or equal to 18 years old and greater than or equal to 37 weeks postconceptual age receiving chest compressions (CC) of any duration during the study. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Of 1,100 children with IHCA, there were 273 medical cardiac (25%), 383 surgical cardiac (35%), and 444 noncardiac (40%) cases. Favorable neurologic outcome was defined as no more than moderate disability or no worsening from baseline Pediatric Cerebral Performance Category at discharge. The medical cardiac group had lower odds of survival with favorable neurologic outcomes compared with the noncardiac group (48% vs 55%; adjusted odds ratio [aOR] [95% CI], aOR 0.59 [95% CI, 0.39-0.87], p = 0.008) and surgical cardiac group (48% vs 58%; aOR 0.64 [95% CI, 0.45-0.9], p = 0.01). We failed to identify a difference in favorable outcomes between surgical cardiac and noncardiac groups. We also failed to identify differences in CC rate, CC fraction, ventilation rate, intra-arrest average target diastolic or systolic blood pressure between medical cardiac versus noncardiac, and surgical cardiac versus noncardiac groups. The surgical cardiac group had lower odds of achieving target CC depth compared to the noncardiac group (OR 0.15 [95% CI, 0.02-0.52], p = 0.001). We failed to identify a difference in the percentage of patients achieving target CC depth when comparing medical cardiac versus noncardiac groups. CONCLUSIONS: In pediatric IHCA, medical cardiac patients had lower odds of survival with favorable neurologic outcomes compared with noncardiac and surgical cardiac patients. We failed to find differences in CPR quality between medical cardiac and noncardiac patients, but there were lower odds of achieving target CC depth in surgical cardiac compared to noncardiac patients.


Subject(s)
Cardiac Surgical Procedures , Cardiopulmonary Resuscitation , Heart Arrest , Heart Diseases , Child , Humans , Heart Arrest/therapy , Heart Diseases/complications , Heart Diseases/therapy , Hospitals
15.
Resuscitation ; 194: 110068, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38052273

ABSTRACT

AIM: Pediatric cardiopulmonary resuscitation (CPR) guidelines recommend starting CPR for heart rates (HRs) less than 60 beats per minute (bpm) with poor perfusion. Objectives were to (1) compare HRs and arterial blood pressures (BPs) prior to CPR among patients with clinician-reported bradycardia with poor perfusion ("BRADY") vs. pulseless electrical activity (PEA); and (2) determine if hemodynamics prior to CPR are associated with outcomes. METHODS AND RESULTS: Prospective observational cohort study performed as a secondary analysis of the ICU-RESUScitation trial (NCT028374497). Comparisons occurred (1) during the 15 seconds "immediately" prior to CPR and (2) over the two minutes prior to CPR, stratified by age (≤1 year, >1 year). Poisson regression models assessed associations between hemodynamics and outcomes. Primary outcome was return of spontaneous circulation (ROSC). Pre-CPR HRs were lower in BRADY vs. PEA (≤1 year: 63.8 [46.5, 87.0] min-1 vs. 120 [93.2, 150.0], p < 0.001; >1 year: 67.4 [54.5, 87.0] min-1 vs. 100 [66.7, 120], p < 0.014). Pre-CPR pulse pressure was higher among BRADY vs. PEA (≤1 year (12.9 [9.0, 28.5] mmHg vs. 10.4 [6.1, 13.4] mmHg, p > 0.001). Pre-CPR pulse pressure ≥ 20 mmHg was associated with higher rates of ROSC among PEA (aRR 1.58 [CI95 1.07, 2.35], p = 0.022) and survival to hospital discharge with favorable neurologic outcome in both groups (BRADY: aRR 1.28 [CI95 1.01, 1.62], p = 0.040; PEA: aRR 1.94 [CI95 1.19, 3.16], p = 0.008). Pre-CPR HR ≥ 60 bpm was not associated with outcomes. CONCLUSIONS: Pulse pressure and HR are used clinically to differentiate BRADY from PEA. A pre-CPR pulse pressure >20 mmHg was associated with improved patient outcomes.


Subject(s)
Cardiopulmonary Resuscitation , Heart Arrest , Child , Humans , Cardiopulmonary Resuscitation/methods , Prospective Studies , Heart Arrest/therapy , Hemodynamics , Pressure
16.
Neurocrit Care ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38062303

ABSTRACT

BACKGROUND: Abusive head trauma (AHT) is a mechanism of pediatric traumatic brain injury (TBI) with high morbidity and mortality. Multiorgan dysfunction syndrome (MODS), defined as organ dysfunction in two or more organ systems, is also associated with morbidity and mortality in critically ill children. Our objective was to compare the frequency of MODS and evaluate its association with outcome between AHT and accidental TBI (aTBI). METHODS: This was a single center, retrospective cohort study including children under 3 years old admitted to the pediatric intensive care unit with nonpenetrating TBI between 2014 and 2021. Presence or absence of MODS on days 1, 3, and 7 using the Pediatric Logistic Organ Dysfunction-2 score and new impairment status (Functional Status Scale score change > 1 compared with preinjury) at hospital discharge (HD), short-term timepoint, and long-term timepoint were abstracted from the electronic health record. Multiple logistic regression was performed to examine the association between MODS and TBI mechanism with new impairment status. RESULTS: Among 576 children, 215 (37%) had AHT and 361 (63%) had aTBI. More children with AHT had MODS on days 1 (34% vs. 23%, p = 0.003), 3 (28% vs. 6%, p < 0.001), and 7 (17% vs. 3%, p < 0.001) compared with those with aTBI. The most common organ failures were cardiovascular ([AHT] 66% vs. [aTBI] 66%, p = 0.997), neurologic (33% vs. 16%, p < 0.001), and respiratory (34% vs. 15%, p < 0.001). MODS was associated with new impairment in multivariable logistic regression at HD (odds ratio 19.1 [95% confidence interval 9.8-38.6, p < 0.001]), short-term discharge (7.4 [3.7-15.2, p < 0.001]), and long-term discharge (4.3 [2.0-9.4, p < 0.001])]. AHT was also associated with new impairment at HD (3.4 [1.6-7.3, p = 0.001]), short-term discharge (2.5 [1.3-4.7, p = 0.005]), and long-term discharge (2.1 [1.1-4.1, p = 0.036]). CONCLUSIONS: Abusive head trauma as a mechanism was associated with MODS following TBI. Both AHT mechanism and MODS were associated with new impairment at all time points.

17.
Crit Care ; 27(1): 388, 2023 10 07.
Article in English | MEDLINE | ID: mdl-37805481

ABSTRACT

INTRODUCTION: Though early hypotension after pediatric in-hospital cardiac arrest (IHCA) is associated with inferior outcomes, ideal post-arrest blood pressure (BP) targets have not been established. We aimed to leverage prospectively collected BP data to explore the association of post-arrest BP thresholds with outcomes. We hypothesized that post-arrest systolic and diastolic BP thresholds would be higher than the currently recommended post-cardiopulmonary resuscitation BP targets and would be associated with higher rates of survival to hospital discharge. METHODS: We performed a secondary analysis of prospectively collected BP data from the first 24 h following return of circulation from index IHCA events enrolled in the ICU-RESUScitation trial (NCT02837497). The lowest documented systolic BP (SBP) and diastolic BP (DBP) were percentile-adjusted for age, height and sex. Receiver operator characteristic curves and cubic spline analyses controlling for illness category and presence of pre-arrest hypotension were generated exploring the association of lowest post-arrest SBP and DBP with survival to hospital discharge and survival to hospital discharge with favorable neurologic outcome (Pediatric Cerebral Performance Category of 1-3 or no change from baseline). Optimal cutoffs for post-arrest BP thresholds were based on analysis of receiver operator characteristic curves and spline curves. Logistic regression models accounting for illness category and pre-arrest hypotension examined the associations of these thresholds with outcomes. RESULTS: Among 693 index events with 0-6 h post-arrest BP data, identified thresholds were: SBP > 10th percentile and DBP > 50th percentile for age, sex and height. Fifty-one percent (n = 352) of subjects had lowest SBP above threshold and 50% (n = 346) had lowest DBP above threshold. SBP and DBP above thresholds were each associated with survival to hospital discharge (SBP: aRR 1.21 [95% CI 1.10, 1.33]; DBP: aRR 1.23 [1.12, 1.34]) and survival to hospital discharge with favorable neurologic outcome (SBP: aRR 1.22 [1.10, 1.35]; DBP: aRR 1.27 [1.15, 1.40]) (all p < 0.001). CONCLUSIONS: Following pediatric IHCA, subjects had higher rates of survival to hospital discharge and survival to hospital discharge with favorable neurologic outcome when BP targets above a threshold of SBP > 10th percentile for age and DBP > 50th percentile for age during the first 6 h post-arrest.


Subject(s)
Cardiopulmonary Resuscitation , Heart Arrest , Hypotension , Child , Humans , Blood Pressure , Heart Arrest/complications , Heart Arrest/therapy , Hypotension/complications , Hospital Mortality , Intensive Care Units
18.
JAMA Netw Open ; 6(10): e2339884, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37883085

ABSTRACT

Importance: The COVID-19 pandemic has been associated with a transient decrease in bronchiolitis hospitalizations compared with prepandemic patterns, but current effects remain unknown. Objective: To analyze changes in patterns of bronchiolitis admissions at US children's hospitals during the 2020-2023 bronchiolitis seasons compared with the 2010-2019 seasons. Design, Setting, and Participants: This retrospective cross-sectional study used data from 41 US children's hospitals in the Pediatric Health Information System database. Bronchiolitis has winter-predominant seasonality, so hospitalizations were grouped according to bronchiolitis season (from July through June). This study included all patients aged younger than 2 years admitted with a diagnosis of bronchiolitis between July 1, 2010, and June 30, 2023. Bronchiolitis seasons from July through June between 2010-2011 and 2019-2020 were classified as the prepandemic era, and seasons between 2020-2021 and 2022-2023 were classified as the pandemic era. Data analysis was performed from July 1, 2010, through June 30, 2023. Exposures: Admission date. Main Outcomes and Measures: The primary outcome was number of hospitalizations for bronchiolitis by season and month. Monthly admission counts from the prepandemic era were transformed into time series and used to train seasonal ensemble forecasting models. Forecasts were compared to monthly admissions during the pandemic era. Results: In this study, there were 400 801 bronchiolitis admissions among 349 609 patients between July 1, 2010, and June 30, 2023. The median patient age was 6 (IQR, 2-12) months; 58.7% were boys and 43.7% were White. Hospitalizations increased gradually during the prepandemic era (median, 29 309 [IQR, 26 196-34 157]), decreased 69.2% (n = 9030) in the 2020-2021 season, and increased 75.3% (n = 51 397) in the 2022-2023 season. Patients in the pandemic era were older than those in the prepandemic era (median, 7 [IQR, 3-14] vs 6 [2-12] months; P < .001). Intensive care unit (ICU) admissions increased from 32.2% (96 245 of 298 535) in the prepandemic era to 36.7% (37 516 of 102 266) in the pandemic era (P < .001). The seasonality of bronchiolitis admissions changed during the pandemic era. Admissions peaked in August 2021 (actual 5036 vs 943 [95% CI, 0-2491] forecasted) and November 2022 (actual 10 120 vs 5268 [95% CI, 3425-7419] forecasted). These findings were unchanged in sensitivity analyses excluding children with complex chronic conditions and excluding repeat admissions. In a sensitivity analysis including all viral lower respiratory tract infections in children aged younger than 5 years, there were 66 767 admissions in 2022-2023 vs 35 623 (31 301-41 002) in the prepandemic era, with the largest increase in children aged 24 to 59 months. Conclusions and Relevance: The findings of this cross-sectional study suggest that bronchiolitis hospitalizations decreased transiently and then increased markedly during the COVID-19 pandemic era. Patients admitted during the pandemic era were older and were more likely to be admitted to an ICU. These findings suggest that bronchiolitis seasonality has not yet returned to prepandemic patterns, and US hospitals should prepare for the possibility of atypical timing again in 2023.


Subject(s)
Bronchiolitis , COVID-19 , Male , Child , Humans , Female , COVID-19/epidemiology , Pandemics , Retrospective Studies , Cross-Sectional Studies , Hospitalization , Bronchiolitis/epidemiology , Hospitals, Pediatric
19.
Crit Care Clin ; 39(4): 717-732, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37704336

ABSTRACT

The practice of medicine is characterized by uncertainty, and the findings of randomized clinical trials (RCTs) are meant to help curb that uncertainty. Traditional RCTs, however, have many limitations. To overcome some of these limitations, new trial paradigms rooted in the origins of evidence-based medicine are beginning to disrupt the traditional mold. These new designs recognize uncertainty permeates medical decision making and aim to capitalize on modern health system infrastructure to integrate investigation as a component of care delivery. This article provides an overview of "living, breathing" trials, including current state, anticipated developments, and areas of controversy.


Subject(s)
COVID-19 , Humans , Evidence-Based Medicine
20.
Resuscitation ; 191: 109939, 2023 10.
Article in English | MEDLINE | ID: mdl-37625580

ABSTRACT

AIM: To evaluate associations between characteristics of simulated point-of-care cardiopulmonary resuscitation (CPR) training with simulated and actual intensive care unit (ICU) CPR performance, and with outcomes of children after in-hospital cardiac arrest. METHODS: This is a pre-specified secondary analysis of the ICU-RESUScitation Project; a prospective, multicentre cluster randomized interventional trial conducted in 18 ICUs from October 2016-March 2021. Point-of-care bedside simulations with real-time feedback to allow multidisciplinary ICU staff to practice CPR on a portable manikin were performed and quality metrics (rate, depth, release velocity, chest compression fraction) were recorded. Actual CPR performance was recorded for children 37 weeks post-conceptual age to 18 years who received chest compressions of any duration, and included intra-arrest haemodynamics and CPR mechanics. Outcomes included survival to hospital discharge with favourable neurologic status. RESULTS: Overall, 18,912 point-of-care simulations were included. Simulation characteristics associated with both simulation and actual performance included site, participant discipline, and timing of simulation training. Simulation characteristics were not associated with survival with favourable neurologic outcome. However, participants in the top 3 sites for improvement in survival with favourable neurologic outcome were more likely to have participated in a simulation in the past month, on a weekday day, to be nurses, and to achieve targeted depth of compression and chest compression fraction goals during simulations than the bottom 3 sites. CONCLUSIONS: Point-of-care simulation characteristics were associated with both simulated and actual CPR performance. More recent simulation, increased nursing participation, and simulation training during daytime hours may improve CPR performance.


Subject(s)
Cardiopulmonary Resuscitation , Heart Arrest , Child , Humans , Cardiopulmonary Resuscitation/education , Prospective Studies , Heart Arrest/therapy , Clinical Competence , Hospitals, Pediatric
SELECTION OF CITATIONS
SEARCH DETAIL
...