Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 196
Filter
1.
Article in English | MEDLINE | ID: mdl-39115737

ABSTRACT

Following the tradition of the 16th International Conference on Chemistry and the Environment (ICCE) in Oslo, Norway (2017), and the subsequent 17th ICCE in Thessaloniki, Greece (2019), a follow-up session on higher education in environmental science was organized at the 18th ICCE in Venice, Italy (June 2023). The aim of the session was to stimulate the exchange of experiences and knowledge on graduate and post-graduate level educational programmes, including their development, prioritization, and implementation. The session discussed the integration of practical training activities, which included the integration of environmental chemistry in various bachelor's and master's programmes. The aim was to demonstrate the versatility of environmental chemistry as an interdisciplinary scientific discipline that allows the development of essential green skills for developing sustainable strategies for the environmental experts of tomorrow. Furthermore, during the session, a survey was conducted among the conference participants to collect attitudes and reflections from the audience on the education of environmental chemistry (and related fields).

2.
Environ Res ; 260: 119583, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992759

ABSTRACT

Lead (Pb) is a global contaminant associated with multiple adverse health effects. Humans are especially vulnerable during critical developmental stages. During pregnancy, exposure to Pb can occur through diet and release from maternal bones. Apolipoprotein E gene (APOE) variants (ɛ2, ɛ3, ɛ4 alleles) may influence sex steroid hormones, bone metabolism, and Pb kinetics. We examined the interplay among maternal APOE (mAPOE) genotypes, fetal sex, parity, and Pb in maternal and cord blood (mB-Pb, CB-Pb) using linear regression models. Our study involved 817 pregnant women and 772 newborns with measured adequate levels of zinc and selenium. We compared carriers of the ε2 and ε4 alleles to those with the ε3/ε3 genotype. The geometric means (range) of mB-Pb and CB-Pb were 11.1 (3.58-87.6) and 9.31 (1.82-47.0) ng/g, respectively. In cases with female fetuses, the maternal mAPOE ε2 allele was associated with higher, while the mAPOE ε4 allele was associated with lower mB-Pb and CB-Pb levels. Nulliparity increased the strength of the observed associations. These findings highlight the significance of mAPOE genetics, fetal sex, and parity in prenatal Pb kinetics. Notably, the maternal ε2 allele may increase the risk of Pb exposure.

3.
Environ Sci Technol ; 58(29): 12853-12864, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38982755

ABSTRACT

Mercury (Hg) researchers have made progress in understanding atmospheric Hg, especially with respect to oxidized Hg (HgII) that can represent 2 to 20% of Hg in the atmosphere. Knowledge developed over the past ∼10 years has pointed to existing challenges with current methods for measuring atmospheric Hg concentrations and the chemical composition of HgII compounds. Because of these challenges, atmospheric Hg experts met to discuss limitations of current methods and paths to overcome them considering ongoing research. Major conclusions included that current methods to measure gaseous oxidized and particulate-bound Hg have limitations, and new methods need to be developed to make these measurements more accurate. Developing analytical methods for measurement of HgII chemistry is challenging. While the ultimate goal is the development of ultrasensitive methods for online detection of HgII directly from ambient air, in the meantime, new surfaces are needed on which HgII can be quantitatively collected and from which it can be reversibly desorbed to determine HgII chemistry. Discussion and identification of current limitations, described here, provide a basis for paths forward. Since the atmosphere is the means by which Hg is globally distributed, accurately calibrated measurements are critical to understanding the Hg biogeochemical cycle.


Subject(s)
Air Pollutants , Atmosphere , Environmental Monitoring , Mercury , Mercury/analysis , Atmosphere/chemistry , Environmental Monitoring/methods , Air Pollutants/analysis
4.
Sci Total Environ ; 948: 174760, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39025144

ABSTRACT

In recent decades, extensive monitoring programmes have been conducted at the national, international, and project levels with the objective of expanding our understanding of the contamination of surface waters with micropollutants, which are often referred to as hazardous substances (HS). It has been demonstrated that HS enter surface waters via a number of pathways, including groundwater, atmospheric deposition, soil erosion, and urban systems. Given the ever-growing list of substances and the high resource demand associated with laboratory analysis, it is common practice to quantify the listed pathways based on emission factors derived from temporally and spatially constrained monitoring programmes. The derivation calculations are subject to high uncertainties, and substantial knowledge gaps remain regarding the relative importance of the unique pathways, territories, and periods. This publication presents a monitoring method designed to quantify the unique emission pathways of HS in large geographical areas characterized by differences in land use, population, and economic development. The method will be tested for a wide range of HS (ubiquitous organic and inorganic pollutants, pesticides, pharmaceuticals) throughout small sub-catchments located on tributaries. The results of the test application demonstrate a high diversity of both emission loads and instream concentrations throughout different regions for numerous substances. Riverine concentrations are found to be highly dependent on the flow status. Soil concentration levels of polycyclic aromatic hydrocarbons (PAH) and perfluoroalkyl substances (PFAS) are found to be in proportion, whereas that of potentially toxic elements (PTE) in a reverse relationship with economic development. In many instances, concentration levels are also contingent upon land use. The findings of this study reinforce the necessity for the implementation of harmonised and concerted HS monitoring programmes, which should encompass a diverse range of substances, emission sources, pathways and geographical areas. This is essential for the reliable development of emission factors.

5.
Sci Rep ; 14(1): 17142, 2024 07 26.
Article in English | MEDLINE | ID: mdl-39060268

ABSTRACT

Due to the increasing importance of exposome in environmental epidemiology, feasibility and usefulness of an Environmental Data Management System (EDMS) using Open Data was evaluated. The EDMS includes data from 10 European cities (Celje (Slovenia), Lódz (Poland), Manchester (UK), Palermo (Italy), Paris (France), Porto (Portugal), Regensburg (Germany), Reus (Spain), Rijeka (Croatia), Thessaloniki (Greece)) about external non-specific and specific exposome factors at the city or country level (2017-2020). Findings showed that the highest values of life expectancy were in Reus females (86 years) and Palermo males (81 years). UK had the highest obesity rate (28%), Croatia the highest prescribed drug consumption (62%), Greece and Portugal the highest smoking rates (37%, 42%) and daily alcohol consumption (21%), respectively. The most polluted cities were Thessaloniki for PM10 (38 µg/m3), Lódz for PM2.5 (25 µg/m3), Porto for NO2 (62 µg/m3) and Rijeka for O3 (92 µg/m3). Thessaloniki had the highest grey space (98%) and Lódz the highest cumulative amount of pollen (39,041 p/m3). The highest daily noise levels ≥ 55 dB was in Reus (81% to traffic) and Regensburg (21% to railway). In drinking water, arsenic had the highest value in Thessaloniki (6.4 µg/L), boron in Celje (24 mg/L) and lead in Paris (46.7 µg/L). Portugal and Greece showed the highest pesticide residues in food (7%). In conclusion, utilizing open-access databases enables the translation of research findings into actionable strategies for public health interventions.


Subject(s)
Exposome , Humans , Male , Female , Environmental Exposure , Data Management , Environmental Monitoring/methods , Europe , Aged, 80 and over , Cities , Aged
6.
Environ Sci Technol ; 58(24): 10706-10716, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38850513

ABSTRACT

Most previous measurements of oxidized mercury were collected using a method now known to be biased low. In this study, a dual-channel system with an oxidized mercury detection limit of 6-12 pg m-3 was deployed alongside a permeation tube-based automated calibrator at a mountain top site in Steamboat Springs Colorado, USA, in 2021 and 2022. Permeation tubes containing elemental mercury and mercury halides were characterized via an International System of Units (SI)-traceable gravimetric method and gas chromatography/mass spectrometry before deployment in the calibrator. The dual-channel system recovered 97 ± 4 and 100 ± 8% (±standard deviation) of injected elemental mercury and HgBr2, respectively. Total Hg permeation rates and Hg speciation from the gravimetric method, the chromatography system, the dual-channel system, and an independent SI-traceable measurement method performed at the Jozef Stefan Institute laboratory were all comparable within the respective uncertainties of each method. These are the first measurements of oxidized mercury at low environmental concentrations that have been verified against an SI-traceable calibration system in field conditions while sampling ambient air, and they show that accurate, routinely calibrated oxidized mercury measurements are achievable.


Subject(s)
Environmental Monitoring , Mercury , Oxidation-Reduction , Mercury/analysis , Calibration , Environmental Monitoring/methods , Atmosphere/chemistry , Air Pollutants/analysis , Colorado , Gas Chromatography-Mass Spectrometry
8.
Environ Sci Pollut Res Int ; 31(24): 35800-35810, 2024 May.
Article in English | MEDLINE | ID: mdl-38740686

ABSTRACT

The number of atmospheric mercury (Hg) monitoring stations is growing globally. However, there are still many regions and locations where Hg monitoring is limited or non-existent. Expansion of the atmospheric Hg monitoring network could be facilitated by the use of cost-effective monitoring methods. As such, biomonitoring and passive monitoring offer a unique alternative to well-established monitoring by active measurements, since they do not require a power supply and require minimal workload to operate. The use of biomonitoring (lichens and mosses) and passive air samplers (PASs) (various designs with synthetic materials) has been reported in the literature, and comparisons with active measurement methods have also been made. However, these studies compared either biomonitoring or PASs (not both) to only one type of active measurement. In our work, we used transplanted (7 sampling sites) and in situ lichens (8 sampling sites) for biomonitoring, two PASs from different producers (3 sampling sites), and two different active measurement types (continuous and discontinuous active measurements, 1 and 8 sampling sites, respectively) to evaluate their effectiveness as monitoring methods. In the 9-month sampling campaign, 3 sampling locations with different characteristics (unpolluted, vicinity of a cement plant, and vicinity of a former Hg mine) were used. The results obtained with lichens and PASs clearly distinguished between sampling locations with different Hg concentrations; using both PASs and lichens together increased the confidence of our observations. The present work shows that biomonitoring and passive sampling can be effectively used to identify areas with elevated atmospheric Hg concentrations. The same can be said for discontinuous active measurements; however, the discrepancy between atmospheric Hg concentrations derived from PASs and discontinuous active measurements should be further investigated in the future.


Subject(s)
Air Pollutants , Biological Monitoring , Environmental Monitoring , Lichens , Mercury , Lichens/chemistry , Mercury/analysis , Environmental Monitoring/methods , Air Pollutants/analysis , Atmosphere/chemistry
9.
Anal Bioanal Chem ; 416(5): 1239-1248, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38193932

ABSTRACT

Hg isotope analysis in samples from background regions is constrained by the presence of low Hg concentration and therefore requires a pre-concentration method. Existing Hg pre-concentration methods are constrained by long sample processing time and limited sample loading capacity. Using foliar samples as a test case, an optimized Hg pre-concentration method is presented that involves the microwave-assisted digestion of samples for Hg isotope analysis with the addition of a pre-digestion step. Microwave-digested foliar samples and CRMs were transferred to an impinger, reduced with SnCl2, and collected in a 2.25 mL concentrated inverse aqua regia (3:1 HNO3:HCl, v/v). This resulted in an optimal acid concentration in the solution ideal for analysis on MC-ICP-MS. The time for purging with Hg-free N2 was optimized to 30 min and the efficiency of the pre-concentration method was tested using a combination of approaches. Tests performed on pure reagents and matrix of foliar samples spiked with 197Hg radiotracer showed recoveries averaging 99 ± 1.7% and 100 ± 3.0%, respectively. Mercury at concentrations as low as 1.83 ng g-1 was pre-concentrated by digesting aliquots of foliage samples in individual digestion vessels. Recoveries following their pre-concentration averaged 99 ± 6.0%, whereas recoveries of 95 ± 4.7% and 95 ± 2.5% were achieved for NIST SRM 1575a (pine needle) and reagents spiked with NIST SRM 3133, respectively. Analysis using multicollector-ICP-MS showed low fractionation of δ202Hg during sample pre-concentration with no significant mass-independent fractionation. The proposed method is a relatively simple and robust way to prepare Hg samples for Hg isotopic analysis and is suitable even for complex biological matrices.


Subject(s)
Mercury , Mercury Isotopes/analysis , Mercury/analysis , Isotopes , Chemical Fractionation
10.
Int J Hyg Environ Health ; 256: 114315, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38168581

ABSTRACT

The genetic susceptibility to low-level lead (Pb) exposure in general populations has been poorly investigated and is limited to the single nucleotide polymorphism (SNP) rs1800435 in the delta-aminolevulinic acid dehydratase gene (ALAD). This study explored associations between ten selected ALAD SNPs with Pb concentrations in blood (BPb) and urine (UPb) among 281 men aged 18-49 years from Slovenia, including 20 individuals residing in a Pb-contaminated area. The geometric mean (range) of BPb and UPb were 19.6 (3.86-84.7) µg/L and 0.69 (0.09-3.82) µg/L SG, respectively. The possible genetic influence was assessed by examining SNP haplotypes, individual SNPs, and the combination of two SNPs using multiple linear regression analyses. While no significant associations were found for haplotypes, the presence of variant alleles of rs1800435 and rs1805312 resulted in an 11% and 13% decrease in BPb, respectively, while the presence of variant allele of rs1139488 (homozygous only) exhibited significant 20% increase in BPb, respectively. Additionally, variant allele of rs1800435 resulted in lower UPb. Individual SNPs in the model explained only around 1 additional percentage point of BPb variability. In contrast, combination analyses identified six combinations of two SNPs, which significantly explained 3-22 additional percentage points of BPb variability, with the highest explanatory power observed for the rs1800435-rs1139488 and rs1139488-rs1805313 combinations. Moreover, excluding participants from the Pb-contaminated area indicated that exposure level influenced SNPs-Pb associations. Our results confirm the importance of the ALAD gene in Pb kinetics even at low exposure levels. Additionally, we demonstrated that identifying individuals with specific combinations of ALAD SNPs explained a larger part of Pb variability, suggesting that these combinations, pending confirmation in other populations and further evaluation through mechanistic studies, may serve as superior susceptibility biomarker in Pb exposure compared to individual SNPs.


Subject(s)
Lead , Porphobilinogen Synthase , Male , Humans , Porphobilinogen Synthase/genetics , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Biomarkers
11.
Anal Chim Acta ; 1288: 342168, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38220300

ABSTRACT

BACKGROUND: The current speciation methods for mercury (Hg) measurements are fraught with considerable uncertainty, from sample collection to calibration. High reactivity of gaseous oxidized Hg (GOM) species and their ultra-trace level presence makes them difficult to sample and calibrate. Given that improper calibration may lead to measurement biases, reliable and metrologically traceable calibration methods are required for accurately quantifying GOM in air. In the present study, we applied the recently developed calibration method based on non-thermal plasma oxidation of elemental Hg, to a commercially available Hg air speciation system for actual environmental measurements of GOM for the first time. RESULTS: Hg species such as HgO, HgCl2, and HgBr2 were produced with trace amounts of reactant gases (oxygen and electrolytically produced chlorine and bromine) and the production was driven by plasma-assisted oxidation. The plasma oxidation efficiency of elemental Hg with oxygen was 98.5 ± 7.5 % (k = 2), while that for chlorine and bromine was 96.8 ± 6.9 % (k = 2) and 97.4 ± 9.6 % (k = 2), respectively. The calibration method was tested against the internal permeation (Hg0) source of the Tekran 2537B Hg analyzer on-field by loading HgO to different KCl-coated denuders using the plasma. GOM concentrations were measured using the Tekran speciation system. With internal calibration, concentrations were up to 9.1 % lower than those in plasma calibration, thereby emphasizing the importance of the calibration strategy. Measurement uncertainty (k = 2) further emphasizes this distinction. Internal calibration measurement uncertainty was 36.8 %, while plasma calibration boasted lower uncertainty at 13.8 %. SIGNIFICANCE: The non-thermal plasma calibration strategy, as a unique and discrete calibration method traceable to the NIST SRM 3133 for ambient air GOM measurements, provide a higher level of confidence in the accuracy of GOM measurements with several advantages over other methods. Calibrations at extreme low concentrations (<100 pg) are possible with this method relevant to ambient air GOM concentrations.

12.
Environ Monit Assess ; 195(11): 1269, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37792086

ABSTRACT

Underground coal extraction at Coal Mine Velenje occasionally gives rise to odour complaints from local residents. This manuscript describes a robust quantification of odorous emissions of mine sources and a model-based analysis aimed to establish a better understanding of the sources, concentrations, dispersion, and possible control of odorous compounds during coal extraction process. Major odour sources during underground mining are released volatile sulphur compounds from coal seam that have characteristic malodours at extremely low concentrations at micrograms per cubic metre (µg/m3) levels. Analysis of 1028 gas samples taken over a 6-year period (2008-2013) reveals that dimethyl sulphide ((CH3)2S) is the major odour active compound present in the mine, being detected on 679 occasions throughout the mine, while hydrogen sulphide (H2S) and sulphur dioxide (SO2) were detected 5 and 26 times. Analysis of gas samples has shown that main DMS sources in the mine are coal extraction locations at longwall faces and development headings and that DMS is releasing during transport from main coal transport system. The dispersion simulations of odour sources in the mine have shown that the concentrations of DMS at median levels can represent relatively modest odour nuisance. While at peak levels, the concentration of DMS remained sufficiently high to create an odour problem both in the mine and on the surface. Overall, dispersion simulations have shown that ventilation regulation on its own is not sufficient as an odour abatement measure.


Subject(s)
Hydrogen Sulfide , Odorants , Environmental Monitoring , Coal
13.
Anal Chim Acta ; 1278: 341735, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37709469

ABSTRACT

BACKGROUND: The relative distribution and importance of monomethylmercury (MMHg) and dimethylmercury (DMHg) in seawater is still under debate. A lack of comparability between measurements at sub-picomolar levels hampered the further understanding of the biogeochemical Hg cycle. To overcome this, we assessed the relative standard measurement uncertainties (Uex,r) for direct measurements of MMHg and DMHg by species-specific isotope dilution ICP-MS and cryo-focusing GC-ICP-MS at femtomolar concentrations. Furthermore, Uex,r was determined for the indirect determination of DMHg (DMHgcalc = MeHg - MMHg) and MeHg (MeHgcalc = MMHg + DMHg) to compare the two methodologies. RESULTS: Expanded Uex,r (confidence interval of 95%) for cryo-focusing GC-ICP-MS was 14.4 (<50 fM) and 14.2% (>50 fM) and for SS-ID GC-ICP-MS 5.6 (<50 fM) and 3.7% (>50 fM). For concentrations above 50 fM, Uex,r for DMHgcalc was always lower than for direct measurements (14.2%). For MeHgcalc, on the other hand, Uex,r was always higher for concentrations above 115 fM (range: 3.7-13.9%) than for direct measurements (3.7%). We evaluated the comparability of directly measured and calculated DMHg and MeHg concentrations based on Hg speciation measurements for two vertical profiles in the Mediterranean Sea. We show that directly measured and indirectly determined DMHg and MeHg concentrations yield comparable results. SIGNIFICANCE: Our results validate the application of the indirect method for the determination of DMHg if a direct measurement method with a low Uex,r such as isotope dilution is used for MMHg and MeHg measurements. The validation of the indirect measurement approach opens new possibilities to generate more precise and accurate DMHg data in the global ocean.


Subject(s)
Mercury , Methylmercury Compounds , Uncertainty , Seawater
14.
Int J Occup Med Environ Health ; 36(3): 349-364, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37681424

ABSTRACT

OBJECTIVES: The authors aimed to evaluate whether blood cadmium (B-Cd), lead (B-Pb) and mercury (B-Hg) in children differ regionally in 9 countries, and to identify factors correlating with exposure. MATERIAL AND METHODS: The authors performed a cross-sectional study of children aged 7-14 years, living in 2007-2008 in urban, rural, or potentially polluted ("hot spot") areas (ca. 50 children from each area, in total 1363 children) in 6 European and 3 non-European countries. The authors analyzed Cd, Pb, and total Hg in blood and collected information on potential determinants of exposure through questionnaires. Regional differences in exposure levels were assessed within each country. RESULTS: Children living near industrial "hot-spots" had B-Cd 1.6 (95% CI: 1.4-1.9) times higher in the Czech Republic and 2.1 (95% CI:1.6-2.8) times higher in Poland, as compared to urban children in the same countries (geometric means [GM]: 0.13 µg/l and 0.15 µg/l, respectively). Correspondingly, B-Pb in the "hot spot" areas was 1.8 (95% CI: 1.6-2.1) times higher than in urban areas in Slovakia and 2.3 (95% CI: 1.9-2.7) times higher in Poland (urban GM: 19.4 µg/l and 16.3 µg/l, respectively). In China and Morocco, rural children had significantly lower B-Pb than urban ones (urban GM: 64 µg/l and 71 µg/l, respectively), suggesting urban exposure from leaded petrol, water pipes and/or coal-burning. Hg "hot spot" areas in China had B-Hg 3.1 (95% CI: 2.7-3.5) times higher, and Ecuador 1.5 (95% CI: 1.2-1.9) times higher, as compared to urban areas (urban GM: 2.45 µg/l and 3.23 µg/l, respectively). Besides industrial exposure, traffic correlated with B-Cd; male sex, environmental tobacco smoke, and offal consumption with B-Pb; and fish consumption and amalgam fillings with B-Hg. However, these correlations could only marginally explain regional differences. CONCLUSIONS: These mainly European results indicate that some children experience about doubled exposures to toxic elements just because of where they live. These exposures are unsafe, identifiable, and preventable and therefore call for preventive actions. Int J Occup Med Environ Health. 2023;36(3):349-64.


Subject(s)
Cadmium , Mercury , Male , Animals , Lead , Morocco/epidemiology , Cross-Sectional Studies , Ecuador , China
15.
Environ Sci Pollut Res Int ; 30(42): 95106-95138, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37597142

ABSTRACT

Human biomonitoring (HBM) frameworks assess human exposure to hazardous chemicals. In this review, we discuss and summarize sample preparation procedures and analytical methodology for six groups of chemicals of emerging concern (CECs), namely diisocyanates, benzotriazoles, benzothiazoles, 4-methylbenzylidene camphor, isothiazolinones, fragrances, and non-phthalate plasticizers, which are increasingly detected in urine, however, are not yet widely included in HBM schemes, despite posing a risk to human health. The sample preparation procedures depend largely on the chemical group; however, solid-phase extraction (SPE) is most often used due to the minimized sample handling, lower sample volume, and generally achieving lower limits of quantification (LOQs) compared to other extraction techniques. In terms of sample analysis, LC-based methods generally achieve lower limits of quantification (LOQs) compared to GC-based methods for the selected six groups of chemicals owing to their broader chemical coverage. In conclusion, since these chemicals are expected to be more frequently included in future HBM studies, it becomes evident that there is a pressing need for rigorous quality assurance programs to ensure better comparability of data. These programs should include the reporting of measurement uncertainty and facilitate inter-laboratory comparisons among the reporting laboratories. In addition, high-resolution mass spectrometry should be more commonly employed to enhance the specificity and selectivity of the applied analytical methodology since it is underrepresented in HBM. Furthermore, due to the scarcity of data on the levels of these CECs in urine, large population HBM studies are necessary to gain a deeper understanding of the associated risks.


Subject(s)
Perfume , Plasticizers , Humans , Benzothiazoles , Odorants
17.
Int J Hyg Environ Health ; 252: 114213, 2023 07.
Article in English | MEDLINE | ID: mdl-37393843

ABSTRACT

BACKGROUND: Seafood is a major source of vital nutrients for optimal fetal growth, but at the same time is the main source of exposure to methylmercury (MeHg), an established neurodevelopmental toxicant. Pregnant women must be provided with dietary advice so as to include safely fish in their diet for nutrition and mercury control. The aim of this work is to present the design of a multicentre randomized control trial (RCT), which combines human biomonitoring (HBM) with dietary interventions using seafood consumption advice to pregnant women for MeHg control, and to collect information about other possible sources of exposure to mercury. It also presents the materials developed for the implementation of the study and the characteristics of the study participants, which were self-reported in the first trimester of pregnancy. METHODS: The "HBM4EU-MOM" RCT was performed in the frame of the European Human Biomonitoring Initiative (HBM4EU) in five coastal, high fish-consuming European countries (Cyprus, Greece, Spain, Portugal and Iceland). According to the study design, pregnant women (≥120/country, ≤20 weeks gestational age) provided a hair sample for total mercury assessment (THg) and personal information relevant to the study (e.g., lifestyle, pregnancy status, diet before and during the pregnancy, information on seafood and factors related to possible non-dietary exposures to mercury) during the first trimester of pregnancy. After sampling, participants were randomly assigned to "control" (habitual practices) or "intervention" (received the harmonized HBM4EU-MOM dietary advice for fish consumption during the pregnancy and were encouraged to follow it). Around child delivery, participants provided a second hair sample and completed another tailored questionnaire. RESULTS: A total of 654 women aged 18-45 years were recruited in 2021 in the five countries, primarily through their health-care providers. The pre-pregnancy BMI of the participants ranged from underweight to obese, but was on average within the healthy range. For 73% of the women, the pregnancy was planned. 26% of the women were active smokers before the pregnancy and 8% continued to smoke during the pregnancy, while 33% were passive smokers before pregnancy and 23% remained passively exposed during the pregnancy. 53% of the women self-reported making dietary changes for their pregnancy, with 74% of these women reporting making the changes upon learning of their pregnancy. Of the 43% who did not change their diet for the pregnancy, 74% reported that their diet was already balanced, 6% found it difficult to make changes and 2% were unsure of what changes to make. Seafood consumption did not change significantly before and during the first trimester of pregnancy (overall average ∼8 times per month), with the highest frequency reported in Portugal (≥15 times per month), followed by Spain (≥7 times per month). During the first-trimester of pregnancy, 89% of the Portuguese women, 85% of the Spanish women and <50% of Greek, Cypriot and Icelandic women reported that they had consumed big oily fish. Relevant to non-dietary exposure sources, most participants (>90%) were unaware of safe procedures for handling spillage from broken thermometers and energy-saving lamps, though >22% experienced such an incident (>1 year ago). 26% of the women had dental amalgams. ∼1% had amalgams placed and ∼2% had amalgams removed during peri-pregnancy. 28% had their hair dyed in the past 3 months and 40% had body tattoos. 8% engaged with gardening involving fertilizers/pesticides and 19% with hobbies involving paints/pigments/dyes. CONCLUSIONS: The study design materials were fit for the purposes of harmonization and quality-assurance. The harmonized information collected from pregnant women suggests that it is important to raise the awareness of women of reproductive age and pregnant women about how to safely include fish in their diet and to empower them to make proper decisions for nutrition and control of MeHg, as well as other chemical exposures.


Subject(s)
Mercury , Methylmercury Compounds , Animals , Female , Humans , Pregnancy , Diet , Europe , Food Contamination/analysis , Mercury/analysis , Methylmercury Compounds/analysis , Multicenter Studies as Topic , Pregnant Women , Randomized Controlled Trials as Topic , Seafood/analysis , Adolescent , Young Adult , Adult , Middle Aged
18.
Talanta ; 264: 124765, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37295056

ABSTRACT

Methylmercury (MeHg) speciation in urine requires a robust, reproducible and sensitive technique that enables reliable measurements in limited sample volumes. Conventional MeHg extraction by acid digestion allows for processing of only small amounts of urine digest, making accurate MeHg determination in low-concentration samples virtually impossible. Distillation has been proven as an efficient isolation method with very low detection limits for measuring MeHg in water samples; therefore, in this study, it was optimised for urine samples. Combined with aqueous phase ethylation, purging with nitrogen, preconcentration on Tenax trap, isothermal gas chromatography and cold vapour atomic fluorescence detection, distillation achieved high and repeatable urine spike recoveries of 94% ± 7%. Larger measured aliquot volume led to a significantly lower limit of detection (LOD) for distillation compared with acid digestion (1.1 versus 5.5 pg g-1 urine). Thirty-two general population urine samples were analysed using both methods, and the results were compared. Distillation led to better separation of MeHg from inorganic Hg and the matrix. Good correlation was observed between the results obtained by the two methods for samples with MeHg concentrations above 10 pg g-1 urine (slope = 0.9492, R2 = 0.9879). For samples below this MeHg concentration, distillation was superior, enabling the measurement of MeHg in 9 out of 12 urine samples that were below the LOD of acid digestion. Distillation had significantly lower measurement uncertainty, particularly in the low-concentration samples, where the expanded combined standard uncertainty of the acid digestion method reached as high as 43.2% (k = 2), predominantly owing to poor sample repeatability.


Subject(s)
Mercury , Methylmercury Compounds , Humans , Methylmercury Compounds/analysis , Distillation , Spectrometry, Fluorescence/methods , Mercury/analysis , Chromatography, Gas/methods
19.
Environ Monit Assess ; 195(5): 604, 2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37086341

ABSTRACT

The study assessed the spatial distribution of total mercury (THg) in soils, sediments, mining wastes, and Au-rich Hg-contaminated tailings from artisanal and small-scale gold mining (ASGM) from Offin, Lower and Upper Pra, Birim, and Anum Rivers, Pra River Basin, Southwestern Ghana. THg measurement using Cold Vapor Atomic Absorption Spectrometry (CVAAS) after acid digestion with HNO3/HCl/HF and k0-INAA, as a reference method, and both provided comparable results. A digestion method, HNO3/HClO2/H2SO4 acid mixture before CVAAS provided lower results, which indicates that the use of HF is of fundamental importance in THg analysis based on acid digestion and its omission may significantly underestimate the presence of Hg in soils and sediments. THg in soils, sediments, Au-rich Hg-contaminated tailings, and mining wastes from the river basin were liberated into a solution for measurement using HNO3/HCl/HF. The study revealed Offin and Lower Pra Rivers showed high distribution (ranges; mg Hg kg-1) of THg in soils (103-770) and sediments (0.20-20.8), respectively; Upper Pra and Anum rivers showed the lowest THg in soils (2.20-3.20) and sediments (0.004-0.02), respectively. About 76.0% of THg in sediments was lower than the USEPA guideline of 0.2 mg Hg kg-1. The highest mean THg (mg Hg kg-1) in Au-rich Hg-contaminated tailings (1673 ± 4.8, n = 4) and mining wastes (17.3-21.5) were from the river Offin. The study showed Offin (Dunkwa-on-Offin site 1) and Lower Pra (Beposo Township) rivers are Hg hotspots that need attention.


Subject(s)
Mercury , Water Pollutants, Chemical , Environmental Monitoring , Gases/analysis , Geologic Sediments/chemistry , Ghana , Gold/analysis , Mercury/analysis , Naphthalenesulfonates , Rivers/chemistry , Soil , Water Pollutants, Chemical/analysis , Mining
20.
Int J Hyg Environ Health ; 249: 114139, 2023 04.
Article in English | MEDLINE | ID: mdl-36870229

ABSTRACT

One of the aims of the European Human Biomonitoring Initiative, HBM4EU, was to provide examples of and good practices for the effective use of human biomonitoring (HBM) data in human health risk assessment (RA). The need for such information is pressing, as previous research has indicated that regulatory risk assessors generally lack knowledge and experience of the use of HBM data in RA. By recognising this gap in expertise, as well as the added value of incorporating HBM data into RA, this paper aims to support the integration of HBM into regulatory RA. Based on the work of the HBM4EU, we provide examples of different approaches to including HBM in RA and in estimations of the environmental burden of disease (EBoD), the benefits and pitfalls involved, information on the important methodological aspects to consider, and recommendations on how to overcome obstacles. The examples are derived from RAs or EBoD estimations made under the HBM4EU for the following HBM4EU priority substances: acrylamide, o-toluidine of the aniline family, aprotic solvents, arsenic, bisphenols, cadmium, diisocyanates, flame retardants, hexavalent chromium [Cr(VI)], lead, mercury, mixture of per-/poly-fluorinated compounds, mixture of pesticides, mixture of phthalates, mycotoxins, polycyclic aromatic hydrocarbons (PAHs), and the UV-filter benzophenone-3. Although the RA and EBoD work presented here is not intended to have direct regulatory implications, the results can be useful for raising awareness of possibly needed policy actions, as newly generated HBM data from HBM4EU on the current exposure of the EU population has been used in many RAs and EBoD estimations.


Subject(s)
Biological Monitoring , Mercury , Humans , Environmental Monitoring/methods , Policy , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL