Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 29(13): 3652-3666, 2023 07.
Article in English | MEDLINE | ID: mdl-37026182

ABSTRACT

The resilience of forests to drought events has become a major natural resource sustainability concern, especially in response to climate change. Yet, little is known about the legacy effects of repeated droughts, and tree species ability to respond across environmental gradients. In this study, we used a tree-ring database (121 sites) to evaluate the overall resilience of tree species to drought events in the last century. We investigated how climate and geography affected the response at the species level. We evaluated temporal trends of resilience using a predictive mixed linear modeling approach. We found that pointer years (e.g., tree growth reduction) occurred during 11.3% of the 20th century, with an average decrease in tree growth of 66% compared to the previous period. The occurrence of pointer years was associated with negative values of the Standardized Precipitation Index (SPI, 81.6%) and Palmer Drought Severity Index (PDSI, 77.3%). Tree species differed in their resilience capacity, however, species inhabiting xeric conditions were less resistant but with higher recovery rates (e.g., Abies concolor, Pinus lambertiana, and Pinus jeffreyi). On average, tree species needed 2.7 years to recover from drought events, with extreme cases requiring more than a decade to reach pre-drought tree growth rates. The main abiotic factor related to resilience was precipitation, confirming that some tree species are better adapted to resist the effects of droughts. We found a temporal variation for all tree resilience indices (scaled to 100), with a decreasing resistance (-0.56 by decade) and resilience (-0.22 by decade), but with a higher recovery (+1.72 by decade) and relative resilience rate (+0.33 by decade). Our results emphasize the importance of time series of forest resilience, particularly by distinguishing the species-level response in the context of legacy of droughts, which are likely to become more frequent and intense under a changing climate.


Subject(s)
Abies , Pinus , Trees , Droughts , Forests , Abies/physiology , Climate Change
2.
Mycorrhiza ; 18(1): 33-41, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17899217

ABSTRACT

Little information is known on what the magnitude of nitrogen (N) processed by ectomycorrhizal (ECM) fungal species in the field. In a common garden experiment performed in a northern California oak woodland, we investigated transfer of nitrogen applied as 15NH4 or 15NO3 from leaves to ectomycorrhizal roots of three oak species, Quercus agrifolia, Q. douglasii, and Q. garryana. Oak seedlings formed five common ectomycorrhizal morphotypes on root tips. Mycorrhizal tips were more enriched in 15N than fine roots. N transfer was greater to the less common morphotypes than to the more common types. 15N transfer from leaves to roots was greater when 15NO3(-), not [Formula: see text], was supplied. 15N transfer to roots was greater in seedlings of Q. agrifolia than in Q. douglasii and Q. garryana. Differential N transfer to ectomycorrhizal root tips suggests that ectomycorrhizal morphotypes can influence flows of N from leaves to roots and that mycorrhizal diversity may influence the total N requirement of plants.


Subject(s)
Mycorrhizae/metabolism , Quercus/metabolism , Quercus/microbiology , Biological Transport, Active , Biomass , California , Ecosystem , Mycorrhizae/classification , Mycorrhizae/isolation & purification , Nitrogen , Nitrogen Isotopes , Plant Leaves/metabolism , Plant Roots/metabolism , Plant Roots/microbiology , Plant Stems/metabolism , Quercus/growth & development , Seedlings/growth & development , Seedlings/metabolism , Seedlings/microbiology , Symbiosis
3.
Mycorrhiza ; 15(8): 589-595, 2005 Nov.
Article in English | MEDLINE | ID: mdl-15997390

ABSTRACT

The concept of a common mycorrhizal network implies that the arrangement of plants and mycorrhizal fungi in a community shares properties with other networks. A network is a system of nodes connected by links. Here we apply network theory to mycorrhizas to determine whether the architecture of a potential common mycorrhizal network is random or scale-free. We analyzed mycorrhizal data from an oak woodland from two perspectives: the phytocentric view using trees as nodes and fungi as links and the mycocentric view using fungi as nodes and trees as links. From the phytocentric perspective, the distribution of potential mycorrhizal links, as measured by the number of ectomycorrhizal morphotypes on trees of Quercus garryana, was random with a short tail, implying that all the individuals of this species are more or less equal in linking to fungi in a potential network. From the mycocentric perspective, however, the distribution of plant links to fungi was scale-free, suggesting that certain fungus species may act as hubs with frequent connections to the network. Parallels exist between social networks and mycorrhizas that suggest future lines of study on mycorrhizal networks.


Subject(s)
Ecosystem , Models, Biological , Mycorrhizae/growth & development , Quercus/microbiology , Biodiversity
4.
J Environ Qual ; 32(1): 162-70, 2003.
Article in English | MEDLINE | ID: mdl-12549555

ABSTRACT

The Willamette Valley of Oregon has extensive areas of poorly drained, commercial grass seed lands. Little is know about the ability of riparian areas in these settings to reduce nitrate in water draining from grass seed fields. We established two study sites with similar soils and hydrology but contrasting riparian vegetation along an intermittent stream that drains perennial ryegrass (Lolium perenne L.) fields in the Willamette Valley of western Oregon. We installed a series of nested piezometers along three transects at each site to examine NO3-N in shallow ground water in grass seed fields and riparian areas. Results showed that a noncultivated riparian zone comprised of grasses and herbaceous vegetation significantly reduced NO3-N concentrations of shallow ground water moving from grass seed fields. Darcy's law-based estimates of shallow ground water flow through riparian zone A/E horizons revealed that this water flowpath could account for only a very small percentage of the streamflow. Even though there is great potential for NO3-N to be reduced as water moves through the noncultivated riparian zone with grass-herbaceous vegetation, the potential was not fully realized because only a small proportion of the stream flow interacts with riparian zone soils. Consequently, effective NO3-N water quality management in poorly drained landscapes similar to the study watershed is primarily dependent on implementation of sound agricultural practices within grass seed fields and is less influenced by riparian zone vegetation. Wise fertilizer application rates and timing are key management tools to reduce export of NO3-N in stream waters.


Subject(s)
Agriculture , Lolium/physiology , Models, Theoretical , Nitrates/pharmacokinetics , Nitrogen/pharmacokinetics , Water Pollution/prevention & control , Biodegradation, Environmental , Ecosystem , Fertilizers , Lolium/chemistry , Nitrates/isolation & purification , Nitrogen/isolation & purification , Rain , Trees , Water Movements , Water Supply
5.
Tree Physiol ; 14(10): 1163-76, 1994 Oct.
Article in English | MEDLINE | ID: mdl-14967626

ABSTRACT

We studied whole-tree C allocation with special emphasis on the quantification of C allocation to roots and root respiration. To document seasonal patterns of C allocation, 2-year-old hybrid poplar trees greater than 3 m tall were labeled with (14)CO(2) in a large Plexiglas chamber in the field, in July and September. Climate and CO(2) concentration were controlled to track ambient conditions during labeling. Individual tree canopy CO(2) assimilation averaged 3.8 micromol CO(2) m(-2) s(-1) (12.9 g C day(-1) tree(-1)) in July and 6.2 micromol CO(2) m(-2) s(-1) (9.8 g C day(-1) tree(-1)) in September. Aboveground dark respiration was 12% of net daytime C fixation in July and 15% in September. Specific activity of root-soil respiration peaked 2 days after labeling and stabilized to less than 5% of maximum 2 weeks later. Low specific activity of root-soil respiration and a labeled pool of root C demonstrated that current photosynthate was the primary source of C for root growth and maintenance during the growing season. Root respiration averaged 20% of total soil respiration in both July and September based on the proportion of labeled C respired to labeled C fixed. In July, 80% of the recovered (14)C was found above ground and closely resembled the weight distribution of the growing shoot. By September, 51% of the recovered (14)C was in the root system and closely resembled the weight distribution of different size classes of roots. The finding that the distribution of biomass and (14)C were similar verified that the C introduced during labeling followed normal seasonal translocation pathways. Results are compared to smaller scale labeling studies and the suitability of the approach for studying long-term C fluxes is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...