Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Nutrients ; 15(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37447379

ABSTRACT

Research investigating the effects of carbohydrate (CHO) mouth rinsing on neurocognitive functions is currently limited and has yielded inconsistent results. In this study, we employed the event-related potential (ERP) electroencephalography technique to investigate the effect of CHO mouth rinsing on electrophysiological correlates of visuospatial attention. Using a double-blind, non-nutritive sweetener (NNS)-controlled, within-subjects design, 53 young adults performed a standard cognitive task (modified Simon task) on two separate days in a fasted state (16 h). Intermittently, mouth rinsing was performed either with a CHO (glucose, 18%, 30 mL) or an NNS solution (aspartame, 0.05%, 30 mL). Results revealed that relative to NNS, electrophysiological correlates of both more bottom-up controlled visuospatial attention (N1pc-ERP component) were decreased in response to CHO rinsing. In contrast, compared to NNS, more top-down controlled visuospatial attention (N2pc-ERP component) was increased after CHO rinsing. Behavioral performance, however, was not affected by mouth rinsing. Our findings suggest that orosensory signals can impact neurocognitive processes of visuospatial attention in a fasted state. This may suggest a central mechanism underlying the ergogenic effects of carbohydrate mouth rinsing on endurance performance could involve modulations of attentional factors. Methodologically, our study underlines that understanding the effects of carbohydrate mouth rinsing at the central level may require combining neuroscientific methods and manipulations of nutritional states.


Subject(s)
Dietary Carbohydrates , Mouthwashes , Young Adult , Humans , Mouthwashes/pharmacology , Dietary Carbohydrates/pharmacology , Sweetening Agents , Attention , Glucose
2.
Nutr Neurosci ; 25(12): 2616-2626, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34772324

ABSTRACT

Human research has shown interactions between rewards and cognitive control. In animal models of affective neuroscience, reward administration typically involves administering orosensory sugar signals (OSS) during caloric-deprived states. We adopted this procedure to investigate neurophysiological mechanisms of reward-cognitive control interactions in humans. We predicted that OSS would affect neurophysiological and behavioral indices of error processing oppositely, depending on the relative weight of the OSS-induced 'wanting' and 'liking' components of reward. We, therefore, conducted a double-blind, non-nutritive sweetener-controlled study with a within-subject design. Fasted (16 hr) participants (N = 61) performed a modified Flanker task to assess neurophysiological (error-related negativity [Ne/ERN]) and behavioral (post-error adaptations) measures of error processing. Non-contingent to task performance, we repeatedly administered either a sugar (glucose) or non-nutritive sweetener (aspartame) solution, which had to be expulsed after short oral stimulation to prevent post-oral effects. Consistent with our hypothesis on how 'liking' would affect Ne/ERN amplitude, we found the latter to be decreased for sugar compared to aspartame. Unexpectedly, we found post-error accuracy, instead of post-error slowing, to be reduced by sugar relative to aspartame. Our findings suggest that OSS may interact with error processing through the 'liking' component of rewards. Adopting our reward-induction procedure (i.e. administering OSS in a state of high reward sensitivity [i.e. fasting], non-contingent to task performance) might help future research investigating the neural underpinnings of reward-cognitive control interactions in humans.


Subject(s)
Food Preferences , Non-Nutritive Sweeteners , Animals , Humans , Appetite/physiology , Aspartame , Food Preferences/physiology , Reward , Sugars , Double-Blind Method
4.
Front Psychol ; 10: 1923, 2019.
Article in English | MEDLINE | ID: mdl-31507488

ABSTRACT

This research aims to investigate whether slow-paced breathing (SPB) improves adaptation to psychological stress, and specifically inhibition, when it is performed before or after physical exertion (PE). According to the resonance model, SPB is expected to increase cardiac vagal activity (CVA). Further, according to the neurovisceral integration model, CVA is positively linked to executive cognitive performance, and would thus play a role in the adaptation to psychological stress. We hypothesized that SPB, in comparison to a control condition, will induce a better adaptation to psychological stress, measured via better inhibitory performance. Two within-subject experiments were conducted with athletes: in the first experiment (N = 60) SPB (or control - neutral TV documentary) was realized before PE ("relax before PE"), and in the second experiment (N = 60) SPB (or the watching TV control) was realized after PE ("relax after PE"). PE consisted of 5 min Burpees, a physical exercise involving the whole body. In both experiments the adaptation to psychological stress was investigated with a Stroop task, a measure of inhibition, which followed PE. Perceived stress increased during PE (partial η2 = 0.63) and during the Stroop task (partial η2 = 0.08), and decreased during relaxation (partial η2 = 0.15), however, no effect of condition was found. At the physiological level PE significantly increased HR, RF, and decreased CVA [operationalized in this research via the root mean square of successive differences (RMSSD)] in both experiments. Further, the number of errors in the incongruent category (Stroop interference accuracy) was found to be lower in the SPB condition in comparison to the control condition, however, these results were not mediated by RMSSD. Additionally, the Stroop interference [reaction times (RTs)] was found to be lower overall in "relax before PE," however, no effect was found regarding SPB and Stroop interference (RTs). Overall, our results suggest that SPB realized before or after PE has a positive effect regarding adaptation to psychological stress and specifically inhibition, however, the underlying mechanisms require further investigation.

5.
Front Psychol ; 9: 1942, 2018.
Article in English | MEDLINE | ID: mdl-30459670

ABSTRACT

Two decades of research indicate that visual processing is typically enhanced for items that are in the space near the hands (near-hand space). Enhanced attention and cognitive control have been thought to be responsible for the observed effects, amongst others. As accumulating experimental evidence and recent theories of dual-tasking suggest an involvement of cognitive control and attentional processes during dual tasking, dual-task performance may be modulated in the near-hand space. Therefore, we performed a series of three experiments that aimed to test if the near-hand space affects the shift between task-component processing in two visual-manual tasks. We applied a Psychological Refractory Period Paradigm (PRP) with varying stimulus-onset asynchrony (SOA) and manipulated stimulus-hand proximity by placing hands either on the side of a computer screen (near-hand condition) or on the lap (far-hand condition). In Experiment 1, Task 1 was a number categorization task (odd vs. even) and Task 2 was a letter categorization task (vowel vs. consonant). Stimulus presentation was spatially segregated with Stimulus 1 presented on the right side of the screen, appearing first and then Stimulus 2, presented on the left side of the screen, appearing second. In Experiment 2, we replaced Task 2 with a color categorization task (orange vs. blue). In Experiment 3, Stimulus 1 and Stimulus 2 were centrally presented as a single bivalent stimulus. The classic PRP effect was shown in all three experiments, with Task 2 performance declining at short SOA while Task 1 performance being relatively unaffected by task-overlap. In none of the three experiments did stimulus-hand proximity affect the size of the PRP effect. Our results indicate that the switching operation between two tasks in the PRP paradigm is neither optimized nor disturbed by being processed in near-hand space.

SELECTION OF CITATIONS
SEARCH DETAIL