Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Sci Data ; 11(1): 483, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729970

ABSTRACT

The Sparsely Annotated Region and Organ Segmentation (SAROS) dataset was created using data from The Cancer Imaging Archive (TCIA) to provide a large open-access CT dataset with high-quality annotations of body landmarks. In-house segmentation models were employed to generate annotation proposals on randomly selected cases from TCIA. The dataset includes 13 semantic body region labels (abdominal/thoracic cavity, bones, brain, breast implant, mediastinum, muscle, parotid/submandibular/thyroid glands, pericardium, spinal cord, subcutaneous tissue) and six body part labels (left/right arm/leg, head, torso). Case selection was based on the DICOM series description, gender, and imaging protocol, resulting in 882 patients (438 female) for a total of 900 CTs. Manual review and correction of proposals were conducted in a continuous quality control cycle. Only every fifth axial slice was annotated, yielding 20150 annotated slices from 28 data collections. For the reproducibility on downstream tasks, five cross-validation folds and a test set were pre-defined. The SAROS dataset serves as an open-access resource for training and evaluating novel segmentation models, covering various scanner vendors and diseases.


Subject(s)
Tomography, X-Ray Computed , Whole Body Imaging , Female , Humans , Male , Image Processing, Computer-Assisted
2.
Sci Rep ; 14(1): 8718, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622275

ABSTRACT

Chronic Obstructive Pulmonary Disease (COPD) is characterized by progressive and irreversible airflow limitation, with individual body composition influencing disease severity. Severe emphysema worsens symptoms through hyperinflation, which can be relieved by bronchoscopic lung volume reduction (BLVR). To investigate how body composition, assessed through CT scans, impacts outcomes in emphysema patients undergoing BLVR. Fully automated CT-based body composition analysis (BCA) was performed in patients with end-stage emphysema receiving BLVR with valves. Post-interventional muscle and adipose tissues were quantified, body size-adjusted, and compared to baseline parameters. Between January 2015 and December 2022, 300 patients with severe emphysema underwent endobronchial valve treatment. Significant improvements were seen in outcome parameters, which were defined as changes in pulmonary function, physical performance, and quality of life (QoL) post-treatment. Muscle volume remained stable (1.632 vs. 1.635 for muscle bone adjusted ratio (BAR) at baseline and after 6 months respectively), while bone adjusted adipose tissue volumes, especially total and pericardial adipose tissue, showed significant increase (2.86 vs. 3.00 and 0.16 vs. 0.17, respectively). Moderate to strong correlations between bone adjusted muscle volume and weaker correlations between adipose tissue volumes and outcome parameters (pulmonary function, QoL and physical performance) were observed. Particularly after 6-month, bone adjusted muscle volume changes positively corresponded to improved outcomes (ΔForced expiratory volume in 1 s [FEV1], r = 0.440; ΔInspiratory vital capacity [IVC], r = 0.397; Δ6Minute walking distance [6MWD], r = 0.509 and ΔCOPD assessment test [CAT], r = -0.324; all p < 0.001). Group stratification by bone adjusted muscle volume changes revealed that groups with substantial muscle gain experienced a greater clinical benefit in pulmonary function improvements, QoL and physical performance (ΔFEV1%, 5.5 vs. 39.5; ΔIVC%, 4.3 vs. 28.4; Δ6MWDm, 14 vs. 110; ΔCATpts, -2 vs. -3.5 for groups with ΔMuscle, BAR% < -10 vs. > 10, respectively). BCA results among patients divided by the minimal clinically important difference for forced expiratory volume of the first second (FEV1) showed significant differences in bone-adjusted muscle and intramuscular adipose tissue (IMAT) volumes and their respective changes after 6 months (ΔMuscle, BAR% -5 vs. 3.4 and ΔIMAT, BAR% -0.62 vs. 0.60 for groups with ΔFEV1 ≤ 100 mL vs > 100 mL). Altered body composition, especially increased muscle volume, is associated with functional improvements in BLVR-treated patients.


Subject(s)
Emphysema , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Pneumonectomy/methods , Quality of Life , Bronchoscopy/methods , Pulmonary Emphysema/diagnostic imaging , Pulmonary Emphysema/surgery , Pulmonary Emphysema/etiology , Emphysema/etiology , Forced Expiratory Volume/physiology , Body Composition , Tomography, X-Ray Computed , Treatment Outcome
3.
Sci Rep ; 14(1): 9465, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658613

ABSTRACT

A poor nutritional status is associated with worse pulmonary function and survival in people with cystic fibrosis (pwCF). CF transmembrane conductance regulator modulators can improve pulmonary function and body weight, but more data is needed to evaluate its effects on body composition. In this retrospective study, a pre-trained deep-learning network was used to perform a fully automated body composition analysis on chest CTs from 66 adult pwCF before and after receiving elexacaftor/tezacaftor/ivacaftor (ETI) therapy. Muscle and adipose tissues were quantified and divided by bone volume to obtain body size-adjusted ratios. After receiving ETI therapy, marked increases were observed in all adipose tissue ratios among pwCF, including the total adipose tissue ratio (+ 46.21%, p < 0.001). In contrast, only small, but statistically significant increases of the muscle ratio were measured in the overall study population (+ 1.63%, p = 0.008). Study participants who were initially categorized as underweight experienced more pronounced effects on total adipose tissue ratio (p = 0.002), while gains in muscle ratio were equally distributed across BMI categories (p = 0.832). Our findings suggest that ETI therapy primarily affects adipose tissues, not muscle tissue, in adults with CF. These effects are primarily observed among pwCF who were initially underweight. Our findings may have implications for the future nutritional management of pwCF.


Subject(s)
Aminophenols , Benzodioxoles , Body Composition , Cystic Fibrosis , Drug Combinations , Indoles , Quinolines , Quinolones , Humans , Cystic Fibrosis/drug therapy , Cystic Fibrosis/physiopathology , Male , Adult , Female , Body Composition/drug effects , Aminophenols/therapeutic use , Quinolones/therapeutic use , Benzodioxoles/therapeutic use , Retrospective Studies , Indoles/therapeutic use , Pyrazoles/therapeutic use , Pyridines/therapeutic use , Tomography, X-Ray Computed , Young Adult , Pyrrolidines/therapeutic use , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Adipose Tissue/diagnostic imaging , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Nutritional Status
4.
Invest Radiol ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436405

ABSTRACT

OBJECTIVES: Accurately acquiring and assigning different contrast-enhanced phases in computed tomography (CT) is relevant for clinicians and for artificial intelligence orchestration to select the most appropriate series for analysis. However, this information is commonly extracted from the CT metadata, which is often wrong. This study aimed at developing an automatic pipeline for classifying intravenous (IV) contrast phases and additionally for identifying contrast media in the gastrointestinal tract (GIT). MATERIALS AND METHODS: This retrospective study used 1200 CT scans collected at the investigating institution between January 4, 2016 and September 12, 2022, and 240 CT scans from multiple centers from The Cancer Imaging Archive for external validation. The open-source segmentation algorithm TotalSegmentator was used to identify regions of interest (pulmonary artery, aorta, stomach, portal/splenic vein, liver, portal vein/hepatic veins, inferior vena cava, duodenum, small bowel, colon, left/right kidney, urinary bladder), and machine learning classifiers were trained with 5-fold cross-validation to classify IV contrast phases (noncontrast, pulmonary arterial, arterial, venous, and urographic) and GIT contrast enhancement. The performance of the ensembles was evaluated using the receiver operating characteristic area under the curve (AUC) and 95% confidence intervals (CIs). RESULTS: For the IV phase classification task, the following AUC scores were obtained for the internal test set: 99.59% [95% CI, 99.58-99.63] for the noncontrast phase, 99.50% [95% CI, 99.49-99.52] for the pulmonary-arterial phase, 99.13% [95% CI, 99.10-99.15] for the arterial phase, 99.8% [95% CI, 99.79-99.81] for the venous phase, and 99.7% [95% CI, 99.68-99.7] for the urographic phase. For the external dataset, a mean AUC of 97.33% [95% CI, 97.27-97.35] and 97.38% [95% CI, 97.34-97.41] was achieved for all contrast phases for the first and second annotators, respectively. Contrast media in the GIT could be identified with an AUC of 99.90% [95% CI, 99.89-99.9] in the internal dataset, whereas in the external dataset, an AUC of 99.73% [95% CI, 99.71-99.73] and 99.31% [95% CI, 99.27-99.33] was achieved with the first and second annotator, respectively. CONCLUSIONS: The integration of open-source segmentation networks and classifiers effectively classified contrast phases and identified GIT contrast enhancement using anatomical landmarks.

5.
Neurooncol Adv ; 6(1): vdae022, 2024.
Article in English | MEDLINE | ID: mdl-38516329

ABSTRACT

Background: Primary central nervous system lymphomas (PCNSL) pose a challenge as they may mimic gliomas on magnetic resonance imaging (MRI) imaging, compelling precise differentiation for appropriate treatment. This study focuses on developing an automated MRI-based workflow to distinguish between PCNSL and gliomas. Methods: MRI examinations of 240 therapy-naive patients (141 males and 99 females, mean age: 55.16 years) with cerebral gliomas and PCNSLs (216 gliomas and 24 PCNSLs), each comprising a non-contrast T1-weighted, fluid-attenuated inversion recovery (FLAIR), and contrast-enhanced T1-weighted sequence were included in the study. HD-GLIO, a pre-trained segmentation network, was used to generate segmentations automatically. To validate the segmentation efficiency, 237 manual segmentations were prepared (213 gliomas and 24 PCNSLs). Subsequently, radiomics features were extracted following feature selection and training of an XGBoost algorithm for classification. Results: The segmentation models for gliomas and PCNSLs achieved a mean Sørensen-Dice coefficient of 0.82 and 0.80 for whole tumors, respectively. Three classification models were developed in this study to differentiate gliomas from PCNSLs. The first model differentiated PCNSLs from gliomas, with an area under the curve (AUC) of 0.99 (F1-score: 0.75). The second model discriminated between high-grade gliomas and PCNSLs with an AUC of 0.91 (F1-score: 0.6), and the third model differentiated between low-grade gliomas and PCNSLs with an AUC of 0.95 (F1-score: 0.89). Conclusions: This study serves as a pilot investigation presenting an automated virtual biopsy workflow that distinguishes PCNSLs from cerebral gliomas. Prior to clinical use, it is necessary to validate the results in a prospective multicenter setting with a larger number of PCNSL patients.

6.
Diagnostics (Basel) ; 14(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38535017

ABSTRACT

Background: This study aimed to evaluate the impact of an AI-assisted fracture detection program on radiology residents' performance in pediatric and adult trauma patients and assess its implications for residency training. Methods: This study, conducted retrospectively, included 200 radiographs from participants aged 1 to 95 years (mean age: 40.7 ± 24.5 years), encompassing various body regions. Among these, 50% (100/200) displayed at least one fracture, totaling one hundred thirty-five fractures, assessed by four radiology residents with different experience levels. A machine learning algorithm was employed for fracture detection, and the ground truth was established by consensus among two experienced senior radiologists. Fracture detection accuracy, reporting time, and confidence were evaluated with and without AI support. Results: Radiology residents' sensitivity for fracture detection improved significantly with AI support (58% without AI vs. 77% with AI, p < 0.001), while specificity showed minor improvements (77% without AI vs. 79% with AI, p = 0.0653). AI stand-alone performance achieved a sensitivity of 93% with a specificity of 77%. AI support for fracture detection significantly reduced interpretation time for radiology residents by an average of approximately 2.6 s (p = 0.0156) and increased resident confidence in the findings (p = 0.0013). Conclusion: AI support significantly enhanced fracture detection sensitivity among radiology residents, particularly benefiting less experienced radiologists. It does not compromise specificity and reduces interpretation time, contributing to improved efficiency. This study underscores AI's potential in radiology, emphasizing its role in training and interpretation improvement.

7.
Sci Rep ; 14(1): 1172, 2024 01 12.
Article in English | MEDLINE | ID: mdl-38216664

ABSTRACT

A novel software, DiffTool, was developed in-house to keep track of changes made by board-certified radiologists to preliminary reports created by residents and evaluate its impact on radiological hands-on training. Before (t0) and after (t2-4) the deployment of the software, 18 residents (median age: 29 years; 33% female) completed a standardized questionnaire on professional training. At t2-4 the participants were also requested to respond to three additional questions to evaluate the software. Responses were recorded via a six-point Likert scale ranging from 1 ("strongly agree") to 6 ("strongly disagree"). Prior to the release of the software, 39% (7/18) of the residents strongly agreed with the statement that they manually tracked changes made by board-certified radiologists to each of their radiological reports while 61% were less inclined to agree with that statement. At t2-4, 61% (11/18) stated that they used DiffTool to track differences. Furthermore, we observed an increase from 33% (6/18) to 44% (8/18) of residents who agreed to the statement "I profit from every corrected report". The DiffTool was well accepted among residents with a regular user base of 72% (13/18), while 78% (14/18) considered it a relevant improvement to their training. The results of this study demonstrate the importance of providing a time-efficient way to analyze changes made to preliminary reports as an additive for professional training.


Subject(s)
Internship and Residency , Radiology , Humans , Female , Adult , Male , Radiography , Software , Radiologists
8.
Invest Radiol ; 59(2): 206-213, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37824140

ABSTRACT

ABSTRACT: Artificial intelligence (AI) techniques are currently harnessed to revolutionize the domain of medical imaging. This review investigates 3 major AI-driven approaches for contrast agent management: new frontiers in contrast agent dose reduction, the contrast-free question, and new applications. By examining recent studies that use AI as a new frontier in contrast media research, we synthesize the current state of the field and provide a comprehensive understanding of the potential and limitations of AI in this context. In doing so, we show the dose limits of reducing the amount of contrast agents and demonstrate why it might not be possible to completely eliminate contrast agents in the future. In addition, we highlight potential new applications to further increase the radiologist's sensitivity at normal doses. At the same time, this review shows which network architectures provide promising approaches and reveals possible artifacts of a paired image-to-image conversion. Furthermore, current US Food and Drug Administration regulatory guidelines regarding AI/machine learning-enabled medical devices are highlighted.


Subject(s)
Artificial Intelligence , Contrast Media , United States , Machine Learning , Artifacts , United States Food and Drug Administration
9.
J Pathol Inform ; 15: 100345, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38075015

ABSTRACT

Introduction: Perihilar cholangiocarcinoma (PHCC) is a rare malignancy with limited survival prediction accuracy. Artificial intelligence (AI) and digital pathology advancements have shown promise in predicting outcomes in cancer. We aimed to improve prognosis prediction for PHCC by combining AI-based histopathological slide analysis with clinical factors. Methods: We retrospectively analyzed 317 surgically treated PHCC patients (January 2009-December 2018) at the University Hospital of Essen. Clinical data, surgical details, pathology, and outcomes were collected. Convolutional neural networks (CNN) analyzed whole-slide images. Survival models incorporated clinical and histological features. Results: Among 142 eligible patients, independent survival predictors were tumor grade (G), tumor size (T), and intraoperative transfusion requirement. The CNN-based model combining clinical and histopathological features demonstrates proof of concept in prognosis prediction, limited by histopathological complexity and feature extraction challenges. However, the CNN-based model generated heatmaps assisting pathologists in identifying areas of interest. Conclusion: AI-based digital pathology showed potential in PHCC prognosis prediction, though refinement is necessary for clinical relevance. Future research should focus on enhancing AI models and exploring novel approaches to improve PHCC patient prognosis prediction.

10.
Invest Radiol ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37994150

ABSTRACT

PURPOSE: The study aimed to develop the open-source body and organ analysis (BOA), a comprehensive computed tomography (CT) image segmentation algorithm with a focus on workflow integration. METHODS: The BOA combines 2 segmentation algorithms: body composition analysis (BCA) and TotalSegmentator. The BCA was trained with the nnU-Net framework using a dataset including 300 CT examinations. The CTs were manually annotated with 11 semantic body regions: subcutaneous tissue, muscle, bone, abdominal cavity, thoracic cavity, glands, mediastinum, pericardium, breast implant, brain, and spinal cord. The models were trained using 5-fold cross-validation, and at inference time, an ensemble was used. Afterward, the segmentation efficiency was evaluated on a separate test set comprising 60 CT scans. In a postprocessing step, a tissue segmentation (muscle, subcutaneous adipose tissue, visceral adipose tissue, intermuscular adipose tissue, epicardial adipose tissue, and paracardial adipose tissue) is created by subclassifying the body regions. The BOA combines this algorithm and the open-source segmentation software TotalSegmentator to have an all-in-one comprehensive selection of segmentations. In addition, it integrates into clinical workflows as a DICOM node-triggered service using the open-source Orthanc research PACS (Picture Archiving and Communication System) server to make the automated segmentation algorithms available to clinicians. The BCA model's performance was evaluated using the Sørensen-Dice score. Finally, the segmentations from the 3 different tools (BCA, TotalSegmentator, and BOA) were compared by assessing the overall percentage of the segmented human body on a separate cohort of 150 whole-body CT scans. RESULTS: The results showed that the BCA outperformed the previous publication, achieving a higher Sørensen-Dice score for the previously existing classes, including subcutaneous tissue (0.971 vs 0.962), muscle (0.959 vs 0.933), abdominal cavity (0.983 vs 0.973), thoracic cavity (0.982 vs 0.965), bone (0.961 vs 0.942), and an overall good segmentation efficiency for newly introduced classes: brain (0.985), breast implant (0.943), glands (0.766), mediastinum (0.880), pericardium (0.964), and spinal cord (0.896). All in all, it achieved a 0.935 average Sørensen-Dice score, which is comparable to the one of the TotalSegmentator (0.94). The TotalSegmentator had a mean voxel body coverage of 31% ± 6%, whereas BCA had a coverage of 75% ± 6% and BOA achieved 93% ± 2%. CONCLUSIONS: The open-source BOA merges different segmentation algorithms with a focus on workflow integration through DICOM node integration, offering a comprehensive body segmentation in CT images with a high coverage of the body volume.

11.
Blood ; 142(26): 2315-2326, 2023 12 28.
Article in English | MEDLINE | ID: mdl-37890142

ABSTRACT

ABSTRACT: Platelet demand management (PDM) is a resource-consuming task for physicians and transfusion managers of large hospitals. Inpatient numbers and institutional standards play significant roles in PDM. However, reliance on these factors alone commonly results in platelet shortages. Using data from multiple sources, we developed, validated, tested, and implemented a patient-specific approach to support PDM that uses a deep learning-based risk score to forecast platelet transfusions for each hospitalized patient in the next 24 hours. The models were developed using retrospective electronic health record data of 34 809 patients treated between 2017 and 2022. Static and time-dependent features included demographics, diagnoses, procedures, blood counts, past transfusions, hematotoxic medications, and hospitalization duration. Using an expanding window approach, we created a training and live-prediction pipeline with a 30-day input and 24-hour forecast. Hyperparameter tuning determined the best validation area under the precision-recall curve (AUC-PR) score for long short-term memory deep learning models, which were then tested on independent data sets from the same hospital. The model tailored for hematology and oncology patients exhibited the best performance (AUC-PR, 0.84; area under the receiver operating characteristic curve [ROC-AUC], 0.98), followed by a multispecialty model covering all other patients (AUC-PR, 0.73). The model specific to cardiothoracic surgery had the lowest performance (AUC-PR, 0.42), likely because of unexpected intrasurgery bleedings. To our knowledge, this is the first deep learning-based platelet transfusion predictor enabling individualized 24-hour risk assessments at high AUC-PR. Implemented as a decision-support system, deep-learning forecasts might improve patient care by detecting platelet demand earlier and preventing critical transfusion shortages.


Subject(s)
Deep Learning , Humans , Platelet Transfusion , Retrospective Studies , Machine Learning , Risk Assessment
12.
Transfus Med Hemother ; 50(4): 277-285, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37767277

ABSTRACT

Introduction: An increasing shortage of donor blood is expected, considering the demographic change in Germany. Due to the short shelf life and varying daily fluctuations in consumption, the storage of platelet concentrates (PCs) becomes challenging. This emphasizes the need for reliable prediction of needed PCs for the blood bank inventories. Therefore, the objective of this study was to evaluate multimodal data from multiple source systems within a hospital to predict the number of platelet transfusions in 3 days on a per-patient level. Methods: Data were collected from 25,190 (42% female and 58% male) patients between 2017 and 2021. For each patient, the number of received PCs, platelet count blood tests, drugs causing thrombocytopenia, acute platelet diseases, procedures, age, gender, and the period of a patient's hospital stay were collected. Two models were trained on samples using a sliding window of 7 days as input and a day 3 target. The model predicts whether a patient will be transfused 3 days in the future. The model was trained with an excessive hyperparameter search using patient-level repeated 5-fold cross-validation to optimize the average macro F2-score. Results: The trained models were tested on 5,022 unique patients. The best-performing model has a specificity of 0.99, a sensitivity of 0.37, an area under the precision-recall curve score of 0.45, an MCC score of 0.43, and an F1-score of 0.43. However, the model does not generalize well for cases when the need for a platelet transfusion is recognized. Conclusion: A patient AI-based platelet forecast could improve logistics management and reduce blood product waste. In this study, we build the first model to predict patient individual platelet demand. To the best of our knowledge, we are the first to introduce this approach. Our model predicts the need for platelet units for 3 days in the future. While sensitivity underperforms, specificity performs reliably. The model may be of clinical use as a pretest for potential patients needing a platelet transfusion within the next 3 days. As sensitivity needs to be improved, further studies should introduce deep learning and wider patient characterization to the methodological multimodal, multisource data approach. Furthermore, a hospital-wide consumption of PCs could be derived from individual predictions.

13.
BMC Health Serv Res ; 23(1): 734, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37415138

ABSTRACT

BACKGROUND: We present FHIR-PYrate, a Python package to handle the full clinical data collection and extraction process. The software is to be plugged into a modern hospital domain, where electronic patient records are used to handle the entire patient's history. Most research institutes follow the same procedures to build study cohorts, but mainly in a non-standardized and repetitive way. As a result, researchers spend time writing boilerplate code, which could be used for more challenging tasks. METHODS: The package can improve and simplify existing processes in the clinical research environment. It collects all needed functionalities into a straightforward interface that can be used to query a FHIR server, download imaging studies and filter clinical documents. The full capacity of the search mechanism of the FHIR REST API is available to the user, leading to a uniform querying process for all resources, thus simplifying the customization of each use case. Additionally, valuable features like parallelization and filtering are included to make it more performant. RESULTS: As an exemplary practical application, the package can be used to analyze the prognostic significance of routine CT imaging and clinical data in breast cancer with tumor metastases in the lungs. In this example, the initial patient cohort is first collected using ICD-10 codes. For these patients, the survival information is also gathered. Some additional clinical data is retrieved, and CT scans of the thorax are downloaded. Finally, the survival analysis can be computed using a deep learning model with the CT scans, the TNM staging and positivity of relevant markers as input. This process may vary depending on the FHIR server and available clinical data, and can be customized to cover even more use cases. CONCLUSIONS: FHIR-PYrate opens up the possibility to quickly and easily retrieve FHIR data, download image data, and search medical documents for keywords within a Python package. With the demonstrated functionality, FHIR-PYrate opens an easy way to assemble research collectives automatically.


Subject(s)
Data Science , Health Level Seven , Humans , Electronic Health Records , Software , Tomography, X-Ray Computed
14.
Eur Radiol Exp ; 7(1): 24, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37185930

ABSTRACT

BACKGROUND: We investigated about optimization of contrast media (CM) dose or radiation dose in thoracoabdominal computed tomography angiography (CTA) by automated tube voltage selection (ATVS) system configuration and CM protocol adaption. METHODS: In six minipigs, CTA-optimized protocols were evaluated regarding objective (contrast-to-noise ratio, CNR) and subjective (6 criteria assessed by Likert scale) image quality. Scan parameters were automatically adapted by the ATVS system operating at 90-kV semi-mode and configured for standard, CM saving, or radiation dose saving (image task, quality settings). Injection protocols (dose, flow rate) were adapted manually. This approach was tested for normal and simulated obese conditions. RESULTS: Radiation exposure (volume-weighted CT dose index) for normal (obese) conditions was 2.4 ± 0.7 (5.0 ± 0.7) mGy (standard), 4.3 ± 1.1 (9.0 ± 1.3) mGy (CM reduced), and 1.7 ± 0.5 (3.5 ± 0.5) mGy (radiation reduced). The respective CM doses for normal (obese) settings were 210 (240) mgI/kg, 155 (177) mgI/kg, and 252 (288) mgI/kg. No significant differences in CNR (normal; obese) were observed between standard (17.8 ± 3.0; 19.2 ± 4.0), CM-reduced (18.2 ± 3.3; 20.5 ± 4.9), and radiation-saving CTAs (16.0 ± 3.4; 18.4 ± 4.1). Subjective analysis showed similar values for optimized and standard CTAs. Only the parameter diagnostic acceptability was significantly lower for radiation-saving CTA compared to the standard CTA. CONCLUSIONS: The CM dose (-26%) or radiation dose (-30%) for thoracoabdominal CTA can be reduced while maintaining objective and subjective image quality, demonstrating the feasibility of the personalization of CTA scan protocols. KEY POINTS: • Computed tomography angiography protocols could be adapted to individual patient requirements using an automated tube voltage selection system combined with adjusted contrast media injection. • Using an adapted automated tube voltage selection system, a contrast media dose reduction (-26%) or radiation dose reduction (-30%) could be possible.


Subject(s)
Computed Tomography Angiography , Contrast Media , Animals , Swine , Computed Tomography Angiography/methods , Swine, Miniature , Tomography, X-Ray Computed/methods , Radiation Dosage
15.
Invest Radiol ; 58(6): 396-404, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36728299

ABSTRACT

OBJECTIVES: The aim of this study is to use virtual contrast enhancement to reduce the amount of hepatobiliary gadolinium-based contrast agent in magnetic resonance imaging with generative adversarial networks (GANs) in a large animal model. METHODS: With 20 healthy Göttingen minipigs, a total of 120 magnetic resonance imaging examinations were performed on 6 different occasions, 50% with reduced (low-dose; 0.005 mmol/kg, gadoxetate) and 50% standard dose (normal-dose; 0.025 mmol/kg). These included arterial, portal venous, venous, and hepatobiliary contrast phases (20 minutes, 30 minutes). Because of incomplete examinations, one animal had to be excluded. Randomly, 3 of 19 animals were selected and withheld for validation (18 examinations). Subsequently, a GAN was trained for image-to-image conversion from low-dose to normal-dose (virtual normal-dose) with the remaining 16 animals (96 examinations). For validation, vascular and parenchymal contrast-to-noise ratio (CNR) was calculated using region of interest measurements of the abdominal aorta, inferior vena cava, portal vein, hepatic parenchyma, and autochthonous back muscles. In parallel, a visual Turing test was performed by presenting the normal-dose and virtual normal-dose data to 3 consultant radiologists, blinded for the type of examination. They had to decide whether they would consider both data sets as consistent in findings and which images were from the normal-dose study. RESULTS: The pooled dynamic phase vascular and parenchymal CNR increased significantly from low-dose to virtual normal-dose (pooled vascular: P < 0.0001, pooled parenchymal: P = 0.0002) and was found to be not significantly different between virtual normal-dose and normal-dose examinations (vascular CNR [mean ± SD]: low-dose 17.6 ± 6.0, virtual normal-dose 41.8 ± 9.7, and normal-dose 48.4 ± 12.2; parenchymal CNR [mean ± SD]: low-dose 20.2 ± 5.9, virtual normal-dose 28.3 ± 6.9, and normal-dose 29.5 ± 7.2). The pooled parenchymal CNR of the hepatobiliary contrast phases revealed a significant increase from the low-dose (22.8 ± 6.2) to the virtual normal-dose (33.2 ± 6.1; P < 0.0001) and normal-dose sequence (37.0 ± 9.1; P < 0.0001). In addition, there was no significant difference between the virtual normal-dose and normal-dose sequence. In the visual Turing test, on the median, the consultant radiologist reported that the sequences of the normal-dose and virtual normal-dose are consistent in findings in 100% of the examinations. Moreover, the consultants were able to identify the normal-dose series as such in a median 54.5% of the cases. CONCLUSIONS: In this feasibility study in healthy Göttingen minipigs, it could be shown that GAN-based virtual contrast enhancement can be used to recreate the image impression of normal-dose imaging in terms of CNR and subjective image similarity in both dynamic and hepatobiliary contrast phases from low-dose data with an 80% reduction in gadolinium-based contrast agent dose. Before clinical implementation, further studies with pathologies are needed to validate whether pathologies are correctly represented by the network.


Subject(s)
Contrast Media , Gadolinium , Animals , Swine , Drug Tapering , Swine, Miniature , Magnetic Resonance Imaging/methods
16.
J Cachexia Sarcopenia Muscle ; 14(1): 545-552, 2023 02.
Article in English | MEDLINE | ID: mdl-36544260

ABSTRACT

BACKGROUND: Personalized therapy planning remains a significant challenge in advanced colorectal cancer care, despite extensive research on prognostic and predictive markers. A strong correlation of sarcopenia or overall body composition and survival has been described. Here, we explore whether automated assessment of body composition and liver metastases from standard of care CT images can add to clinical parameters in personalized survival risk prognostication. METHODS: We retrospectively analysed clinical imaging data from 85 patients (50.6% female, mean age 58.9 SD 12.2 years) with colorectal cancer and synchronous liver metastases. Pretrained deep learning models were used to assess body composition and liver metastasis geometry from abdominal CT images before the initiation of systemic treatment. Abdominal muscle-to-bone ratio (MBR) was calculated by dividing abdominal muscle volume by abdominal bone volume. MBR was compared with body mass index (BMI), abdominal muscle volume, and abdominal muscle volume divided by height squared. Differences in overall survival based on body composition and liver metastasis parameters were compared using Kaplan-Meier survival curves. Results were correlated with clinical and biomarker data to develop a machine learning model for survival risk prognostication. RESULTS: The MBR, unlike abdominal muscle volume or BMI, was significantly associated with overall survival (HR 0.39, 95% CI: 0.19-0.80, P = 0.009). The MBR (P = 0.022), liver metastasis surface area (P = 0.01) and primary tumour sidedness (P = 0.007) were independently associated with overall survival in multivariate analysis. Body composition parameters did not correlate with KRAS mutational status or primary tumour sidedness. A prediction model based on MBR, liver metastasis surface area and primary tumour sidedness achieved a concordance index of 0.69. CONCLUSIONS: Automated segmentation enables to extract prognostic parameters from routine imaging data for personalized survival modelling in advanced colorectal cancer patients.


Subject(s)
Colorectal Neoplasms , Deep Learning , Liver Neoplasms , Humans , Female , Middle Aged , Male , Retrospective Studies , Tumor Burden , Muscle, Skeletal/pathology , Tomography, X-Ray Computed , Colorectal Neoplasms/pathology , Body Composition
17.
Sci Rep ; 12(1): 16479, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36183002

ABSTRACT

The precise preoperative calculation of functional liver volumes is essential prior major liver resections, as well as for the evaluation of a suitable donor for living donor liver transplantation. The aim of this study was to develop a fully automated, reproducible, and quantitative 3D volumetry of the liver from standard CT examinations of the abdomen as part of routine clinical imaging. Therefore, an in-house dataset of 100 venous phase CT examinations for training and 30 venous phase ex-house CT examinations with a slice thickness of 5 mm for testing and validating were fully annotated with right and left liver lobe. Multi-Resolution U-Net 3D neural networks were employed for segmenting these liver regions. The Sørensen-Dice coefficient was greater than 0.9726 ± 0.0058, 0.9639 ± 0.0088, and 0.9223 ± 0.0187 and a mean volume difference of 32.12 ± 19.40 ml, 22.68 ± 21.67 ml, and 9.44 ± 27.08 ml compared to the standard of reference (SoR) liver, right lobe, and left lobe annotation was achieved. Our results show that fully automated 3D volumetry of the liver on routine CT imaging can provide reproducible, quantitative, fast and accurate results without needing any examiner in the preoperative work-up for hepatobiliary surgery and especially for living donor liver transplantation.


Subject(s)
Liver Transplantation , Living Donors , Abdomen , Hepatic Veins/diagnostic imaging , Humans , Imaging, Three-Dimensional/methods , Liver/diagnostic imaging , Liver/surgery , Liver Transplantation/methods , Tomography, X-Ray Computed/methods
18.
Sci Rep ; 12(1): 16411, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36180519

ABSTRACT

The complex process of manual biomarker extraction from body composition analysis (BCA) has far restricted the analysis of SARS-CoV-2 outcomes to small patient cohorts and a limited number of tissue types. We investigate the association of two BCA-based biomarkers with the development of severe SARS-CoV-2 infections for 918 patients (354 female, 564 male) regarding disease severity and mortality (186 deceased). Multiple tissues, such as muscle, bone, or adipose tissue are used and acquired with a deep-learning-based, fully-automated BCA from computed tomography images of the chest. The BCA features and markers were univariately analyzed with a Shapiro-Wilk and two-sided Mann-Whitney-U test. In a multivariate approach, obtained markers were adjusted by a defined set of laboratory parameters promoted by other studies. Subsequently, the relationship between the markers and two endpoints, namely severity and mortality, was investigated with regard to statistical significance. The univariate approach showed that the muscle volume was significant for female (pseverity ≤ 0.001, pmortality ≤ 0.0001) and male patients (pseverity = 0.018, pmortality ≤ 0.0001) regarding the severity and mortality endpoints. For male patients, the intra- and intermuscular adipose tissue (IMAT) (p ≤ 0.0001), epicardial adipose tissue (EAT) (p ≤ 0.001) and pericardial adipose tissue (PAT) (p ≤ 0.0001) were significant regarding the severity outcome. With the mortality outcome, muscle (p ≤ 0.0001), IMAT (p ≤ 0.001), EAT (p = 0.011) and PAT (p = 0.003) remained significant. For female patients, bone (p ≤ 0.001), IMAT (p = 0.032) and PAT (p = 0.047) were significant in univariate analyses regarding the severity and bone (p = 0.005) regarding the mortality. Furthermore, the defined sarcopenia marker (p ≤ 0.0001, for female and male) was significant for both endpoints. The cardiac marker was significant for severity (pfemale = 0.014, pmale ≤ 0.0001) and for mortality (pfemale ≤ 0.0001, pmale ≤ 0.0001) endpoint for both genders. The multivariate logistic regression showed that the sarcopenia marker was significant (pseverity = 0.006, pmortality = 0.002) for both endpoints (ORseverity = 0.42, 95% CIseverity: 0.23-0.78, ORmortality = 0.34, 95% CImortality: 0.17-0.67). The cardiac marker showed significance (p = 0.018) only for the severity endpoint (OR = 1.42, 95% CI 1.06-1.90). The association between BCA-based sarcopenia and cardiac biomarkers and disease severity and mortality suggests that these biomarkers can contribute to the risk stratification of SARS-CoV-2 patients. Patients with a higher cardiac marker and a lower sarcopenia marker are at risk for a severe course or death. Whether those biomarkers hold similar importance for other pneumonia-related diseases requires further investigation.


Subject(s)
COVID-19 , Sarcopenia , Adipose Tissue/diagnostic imaging , Biomarkers , Body Composition , Female , Humans , Male , Retrospective Studies , SARS-CoV-2 , Sarcopenia/diagnostic imaging , Tomography, X-Ray Computed/methods
19.
Sci Rep ; 12(1): 13419, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35927564

ABSTRACT

Patients with neuroendocrine tumors of gastro-entero-pancreatic origin (GEP-NET) experience changes in fat and muscle composition. Dual-energy X-ray absorptiometry (DXA) and bioelectrical impedance analysis (BIA) are currently used to analyze body composition. Changes thereof could indicate cancer progression or response to treatment. This study examines the correlation between CT-based (computed tomography) body composition analysis (BCA) and DXA or BIA measurement. 74 GEP-NET-patients received whole-body [68Ga]-DOTATOC-PET/CT, BIA, and DXA-scans. BCA was performed based on the non-contrast-enhanced, 5 mm, whole-body-CT images. BCA from CT shows a strong correlation between body fat ratio with DXA (r = 0.95, ρC = 0.83) and BIA (r = 0.92, ρC = 0.76) and between skeletal muscle ratio with BIA: r = 0.81, ρC = 0.49. The deep learning-network achieves highly accurate results (mean Sørensen-Dice-score 0.93). Using BCA on routine Positron emission tomography/CT-scans to monitor patients' body composition in the diagnostic workflow can reduce additional exams whilst substantially amplifying measurement in slower progressing cancers such as GEP-NET.


Subject(s)
Body Composition , Positron Emission Tomography Computed Tomography , Absorptiometry, Photon/methods , Body Composition/physiology , Body Mass Index , Electric Impedance , Humans , Tomography, X-Ray Computed
20.
Eur J Nucl Med Mol Imaging ; 49(13): 4503-4515, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35904589

ABSTRACT

PURPOSE: Both digital positron emission tomography (PET) detector technologies and artificial intelligence based image post-reconstruction methods allow to reduce the PET acquisition time while maintaining diagnostic quality. The aim of this study was to acquire ultra-low-count fluorodeoxyglucose (FDG) ExtremePET images on a digital PET/computed tomography (CT) scanner at an acquisition time comparable to a CT scan and to generate synthetic full-dose PET images using an artificial neural network. METHODS: This is a prospective, single-arm, single-center phase I/II imaging study. A total of 587 patients were included. For each patient, a standard and an ultra-low-count FDG PET/CT scan (whole-body acquisition time about 30 s) were acquired. A modified pix2pixHD deep-learning network was trained employing 387 data sets as training and 200 as test cohort. Three models (PET-only and PET/CT with or without group convolution) were compared. Detectability and quantification were evaluated. RESULTS: The PET/CT input model with group convolution performed best regarding lesion signal recovery and was selected for detailed evaluation. Synthetic PET images were of high visual image quality; mean absolute lesion SUVmax (maximum standardized uptake value) difference was 1.5. Patient-based sensitivity and specificity for lesion detection were 79% and 100%, respectively. Not-detected lesions were of lower tracer uptake and lesion volume. In a matched-pair comparison, patient-based (lesion-based) detection rate was 89% (78%) for PERCIST (PET response criteria in solid tumors)-measurable and 36% (22%) for non PERCIST-measurable lesions. CONCLUSION: Lesion detectability and lesion quantification were promising in the context of extremely fast acquisition times. Possible application scenarios might include re-staging of late-stage cancer patients, in whom assessment of total tumor burden can be of higher relevance than detailed evaluation of small and low-uptake lesions.


Subject(s)
Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Humans , Positron Emission Tomography Computed Tomography/methods , Artificial Intelligence , Prospective Studies , Positron-Emission Tomography/methods , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...